Matches in SemOpenAlex for { <https://semopenalex.org/work/W2069245597> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2069245597 endingPage "3515" @default.
- W2069245597 startingPage "3492" @default.
- W2069245597 abstract "We consider a class of multiscale Gaussian models on pyramidally structured graphs. While such models have been considered in the past, very recent advances in inference methods for graphical models not only yield additional motivation for this class of models but also bring techniques that lead to new and powerful algorithms. We provide a brief summary of these recent advances – including so-called walk-sum analysis, methods based on Lagrangian relaxation, and a new method for “low-rank,” wavelet-based, unbiased estimation of error variances – and then adapt and apply them to problems of estimation for pyramidal models. We demonstrate that our models not only capture long-range dependencies but that they also have the property that conditioned on neighboring scales, the correlation behavior within a scale is dramatically compressed. This leads to algorithms resembling multipole methods for solving partial differential equations in which we alternate computations across-scale (using an embedded tree in the pyramidal graph) with local updates within each scale. Not only are these algorithms guaranteed to converge to the correct answers but they also lead to new, adaptive methods for choosing embedded trees and subgraphs to achieve rapid convergence. This approach also leads to a solution to the so-called re-estimation problem in which we seek to update an estimate rapidly after local changes are made to the prior model or to the available data. In addition, by using a consistent probabilistic model across as well as within scales, we are able both to exploit low-rank variance estimation methods and to develop efficient iterative algorithms for parameter estimation." @default.
- W2069245597 created "2016-06-24" @default.
- W2069245597 creator A5024437306 @default.
- W2069245597 creator A5026795227 @default.
- W2069245597 creator A5044409973 @default.
- W2069245597 creator A5056040198 @default.
- W2069245597 creator A5057544333 @default.
- W2069245597 date "2008-08-01" @default.
- W2069245597 modified "2023-09-23" @default.
- W2069245597 title "Multiscale stochastic modeling for tractable inference and data assimilation" @default.
- W2069245597 cites W1968628558 @default.
- W2069245597 cites W1974916745 @default.
- W2069245597 cites W1995485090 @default.
- W2069245597 cites W2041432922 @default.
- W2069245597 cites W2062373208 @default.
- W2069245597 cites W2082092681 @default.
- W2069245597 cites W2083206954 @default.
- W2069245597 cites W2094473717 @default.
- W2069245597 cites W2098507775 @default.
- W2069245597 cites W2102013584 @default.
- W2069245597 cites W2107277150 @default.
- W2069245597 cites W2108619558 @default.
- W2069245597 cites W2114915914 @default.
- W2069245597 cites W2135094946 @default.
- W2069245597 cites W2139549194 @default.
- W2069245597 cites W2153421356 @default.
- W2069245597 cites W2155543892 @default.
- W2069245597 cites W2158122241 @default.
- W2069245597 cites W2164918853 @default.
- W2069245597 cites W4235499294 @default.
- W2069245597 doi "https://doi.org/10.1016/j.cma.2007.12.021" @default.
- W2069245597 hasPublicationYear "2008" @default.
- W2069245597 type Work @default.
- W2069245597 sameAs 2069245597 @default.
- W2069245597 citedByCount "19" @default.
- W2069245597 countsByYear W20692455972012 @default.
- W2069245597 countsByYear W20692455972014 @default.
- W2069245597 countsByYear W20692455972015 @default.
- W2069245597 countsByYear W20692455972016 @default.
- W2069245597 countsByYear W20692455972019 @default.
- W2069245597 countsByYear W20692455972021 @default.
- W2069245597 crossrefType "journal-article" @default.
- W2069245597 hasAuthorship W2069245597A5024437306 @default.
- W2069245597 hasAuthorship W2069245597A5026795227 @default.
- W2069245597 hasAuthorship W2069245597A5044409973 @default.
- W2069245597 hasAuthorship W2069245597A5056040198 @default.
- W2069245597 hasAuthorship W2069245597A5057544333 @default.
- W2069245597 hasConcept C11413529 @default.
- W2069245597 hasConcept C119857082 @default.
- W2069245597 hasConcept C126255220 @default.
- W2069245597 hasConcept C154945302 @default.
- W2069245597 hasConcept C155846161 @default.
- W2069245597 hasConcept C2776214188 @default.
- W2069245597 hasConcept C33923547 @default.
- W2069245597 hasConcept C41008148 @default.
- W2069245597 hasConcept C80444323 @default.
- W2069245597 hasConceptScore W2069245597C11413529 @default.
- W2069245597 hasConceptScore W2069245597C119857082 @default.
- W2069245597 hasConceptScore W2069245597C126255220 @default.
- W2069245597 hasConceptScore W2069245597C154945302 @default.
- W2069245597 hasConceptScore W2069245597C155846161 @default.
- W2069245597 hasConceptScore W2069245597C2776214188 @default.
- W2069245597 hasConceptScore W2069245597C33923547 @default.
- W2069245597 hasConceptScore W2069245597C41008148 @default.
- W2069245597 hasConceptScore W2069245597C80444323 @default.
- W2069245597 hasIssue "43-44" @default.
- W2069245597 hasLocation W20692455971 @default.
- W2069245597 hasOpenAccess W2069245597 @default.
- W2069245597 hasPrimaryLocation W20692455971 @default.
- W2069245597 hasRelatedWork W2037309121 @default.
- W2069245597 hasRelatedWork W2097107341 @default.
- W2069245597 hasRelatedWork W2535143705 @default.
- W2069245597 hasRelatedWork W2793431221 @default.
- W2069245597 hasRelatedWork W2951143028 @default.
- W2069245597 hasRelatedWork W2952920919 @default.
- W2069245597 hasRelatedWork W2964084343 @default.
- W2069245597 hasRelatedWork W3013715183 @default.
- W2069245597 hasRelatedWork W4297779426 @default.
- W2069245597 hasRelatedWork W4301951271 @default.
- W2069245597 hasVolume "197" @default.
- W2069245597 isParatext "false" @default.
- W2069245597 isRetracted "false" @default.
- W2069245597 magId "2069245597" @default.
- W2069245597 workType "article" @default.