Matches in SemOpenAlex for { <https://semopenalex.org/work/W2069249196> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2069249196 endingPage "72" @default.
- W2069249196 startingPage "57" @default.
- W2069249196 abstract "Learning classifier systems (LCSs) are evolutionary machine learning algorithms, flexible enough to be applied to reinforcement, supervised and unsupervised learning problems with good performance. Recently, self organizing classifiers were proposed which are similar to LCSs but have the advantage that in its structured population no balance between niching and fitness pressure is necessary. However, more tests and analysis are required to verify its benefits. Here, a variation of the first algorithm is proposed which uses a parameterless self organizing map (SOM). This algorithm is applied in challenging problems such as big, noisy as well as dynamically changing continuous input-action mazes (growing and compressing mazes are included) with good performance. Moreover, a genetic operator is proposed which utilizes the topological information of the SOM’s population structure, improving the results. Thus, the first steps in structured evolutionary machine learning are shown, nonetheless, the problems faced are more difficult than the state-of-art continuous input-action multi-step ones." @default.
- W2069249196 created "2016-06-24" @default.
- W2069249196 creator A5034872772 @default.
- W2069249196 creator A5045997649 @default.
- W2069249196 creator A5085520273 @default.
- W2069249196 date "2013-10-26" @default.
- W2069249196 modified "2023-10-15" @default.
- W2069249196 title "Self organizing classifiers: first steps in structured evolutionary machine learning" @default.
- W2069249196 cites W120361141 @default.
- W2069249196 cites W1535810436 @default.
- W2069249196 cites W1537945876 @default.
- W2069249196 cites W1542844330 @default.
- W2069249196 cites W1591645366 @default.
- W2069249196 cites W1595159159 @default.
- W2069249196 cites W165654862 @default.
- W2069249196 cites W1777847797 @default.
- W2069249196 cites W1999128321 @default.
- W2069249196 cites W2009718765 @default.
- W2069249196 cites W2043574999 @default.
- W2069249196 cites W2043762012 @default.
- W2069249196 cites W2044462844 @default.
- W2069249196 cites W2045417194 @default.
- W2069249196 cites W2076068014 @default.
- W2069249196 cites W2093646420 @default.
- W2069249196 cites W2104568672 @default.
- W2069249196 cites W2118209142 @default.
- W2069249196 cites W2128264585 @default.
- W2069249196 cites W2137261852 @default.
- W2069249196 cites W2156773695 @default.
- W2069249196 cites W2159790141 @default.
- W2069249196 cites W2166348281 @default.
- W2069249196 cites W2167814825 @default.
- W2069249196 cites W2168701898 @default.
- W2069249196 cites W2171438620 @default.
- W2069249196 cites W27099774 @default.
- W2069249196 cites W4238380085 @default.
- W2069249196 doi "https://doi.org/10.1007/s12065-013-0095-x" @default.
- W2069249196 hasPublicationYear "2013" @default.
- W2069249196 type Work @default.
- W2069249196 sameAs 2069249196 @default.
- W2069249196 citedByCount "9" @default.
- W2069249196 countsByYear W20692491962014 @default.
- W2069249196 countsByYear W20692491962015 @default.
- W2069249196 countsByYear W20692491962018 @default.
- W2069249196 countsByYear W20692491962019 @default.
- W2069249196 countsByYear W20692491962020 @default.
- W2069249196 crossrefType "journal-article" @default.
- W2069249196 hasAuthorship W2069249196A5034872772 @default.
- W2069249196 hasAuthorship W2069249196A5045997649 @default.
- W2069249196 hasAuthorship W2069249196A5085520273 @default.
- W2069249196 hasBestOaLocation W20692491962 @default.
- W2069249196 hasConcept C119857082 @default.
- W2069249196 hasConcept C154945302 @default.
- W2069249196 hasConcept C41008148 @default.
- W2069249196 hasConceptScore W2069249196C119857082 @default.
- W2069249196 hasConceptScore W2069249196C154945302 @default.
- W2069249196 hasConceptScore W2069249196C41008148 @default.
- W2069249196 hasIssue "2" @default.
- W2069249196 hasLocation W20692491961 @default.
- W2069249196 hasLocation W20692491962 @default.
- W2069249196 hasOpenAccess W2069249196 @default.
- W2069249196 hasPrimaryLocation W20692491961 @default.
- W2069249196 hasRelatedWork W2961085424 @default.
- W2069249196 hasRelatedWork W3046775127 @default.
- W2069249196 hasRelatedWork W3107474891 @default.
- W2069249196 hasRelatedWork W3170094116 @default.
- W2069249196 hasRelatedWork W3209574120 @default.
- W2069249196 hasRelatedWork W4205958290 @default.
- W2069249196 hasRelatedWork W4286629047 @default.
- W2069249196 hasRelatedWork W4306321456 @default.
- W2069249196 hasRelatedWork W4306674287 @default.
- W2069249196 hasRelatedWork W4224009465 @default.
- W2069249196 hasVolume "6" @default.
- W2069249196 isParatext "false" @default.
- W2069249196 isRetracted "false" @default.
- W2069249196 magId "2069249196" @default.
- W2069249196 workType "article" @default.