Matches in SemOpenAlex for { <https://semopenalex.org/work/W2069687568> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2069687568 endingPage "349" @default.
- W2069687568 startingPage "343" @default.
- W2069687568 abstract "Current copiousness of genomic information stored in biological databases [Mar Albà, M., Lee, M., Pearl, D., Shepherd, F.M.G., Martin, A.J., Orengo, N., Kellam, C.A., 2001. P. VIDA: a virus database system for the organisation of virus genome open reading frames. Nuleic Acids Res. 133–136] makes ultimately feasible the proposal for an application of knowledge management aimed to discover general rules in subcellular phenomena. The goal of this work is primarily to discover relationships between genes by microarray analysis. The tools exploited come from clustering techniques and are mainly based on Knowledge Discovery in Databases (KDD) concepts [Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., 1996. From data mining to knowledge discovery in databases. AI Magazine 17(3), 37–54]. Starting from a data set, each element can be represented by a characteristic matrix, which sums up all data attributes. In this case data mining is oriented to perform a Pattern Recognition of related sequences, hidden in databases [Hand, D.J., Nicholas, A., 2005. Heard finding groups in gene expression data. J. Biomed. Biotechnol. 215–225]. Following a bottom up approach, the next refinement is to compare retrieved data to gather similar features, by dedicated clustering algorithms [Kaufman, L., Rousseeuw, P.J., 1990. Finding groups in data. An Introduction to Cluster Analysis. John Wiley & Sons, New York; Forman, G., Zhang, B., 2000. Distributed Data clustering can be efficient and exact HP. Laboratories Palo Alto HPL-2000, p. 158], driven by fuzzy logic, allowing us to perceive by intuition a common denominator for various genomic families and to anticipate likely future developments." @default.
- W2069687568 created "2016-06-24" @default.
- W2069687568 creator A5047812553 @default.
- W2069687568 creator A5087726862 @default.
- W2069687568 date "2007-04-01" @default.
- W2069687568 modified "2023-09-25" @default.
- W2069687568 title "Genomic comparison using data mining techniques based on a possibilistic fuzzy sets model" @default.
- W2069687568 cites W1999062346 @default.
- W2069687568 cites W2023971898 @default.
- W2069687568 cites W2081535641 @default.
- W2069687568 cites W2133883537 @default.
- W2069687568 cites W80997463 @default.
- W2069687568 doi "https://doi.org/10.1016/j.biosystems.2006.07.014" @default.
- W2069687568 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17204362" @default.
- W2069687568 hasPublicationYear "2007" @default.
- W2069687568 type Work @default.
- W2069687568 sameAs 2069687568 @default.
- W2069687568 citedByCount "14" @default.
- W2069687568 countsByYear W20696875682012 @default.
- W2069687568 countsByYear W20696875682013 @default.
- W2069687568 countsByYear W20696875682015 @default.
- W2069687568 countsByYear W20696875682017 @default.
- W2069687568 countsByYear W20696875682020 @default.
- W2069687568 countsByYear W20696875682021 @default.
- W2069687568 countsByYear W20696875682022 @default.
- W2069687568 crossrefType "journal-article" @default.
- W2069687568 hasAuthorship W2069687568A5047812553 @default.
- W2069687568 hasAuthorship W2069687568A5087726862 @default.
- W2069687568 hasConcept C111472728 @default.
- W2069687568 hasConcept C120567893 @default.
- W2069687568 hasConcept C124101348 @default.
- W2069687568 hasConcept C132010649 @default.
- W2069687568 hasConcept C138885662 @default.
- W2069687568 hasConcept C154945302 @default.
- W2069687568 hasConcept C201797286 @default.
- W2069687568 hasConcept C20901353 @default.
- W2069687568 hasConcept C23123220 @default.
- W2069687568 hasConcept C41008148 @default.
- W2069687568 hasConcept C58166 @default.
- W2069687568 hasConcept C60644358 @default.
- W2069687568 hasConcept C73555534 @default.
- W2069687568 hasConcept C86803240 @default.
- W2069687568 hasConceptScore W2069687568C111472728 @default.
- W2069687568 hasConceptScore W2069687568C120567893 @default.
- W2069687568 hasConceptScore W2069687568C124101348 @default.
- W2069687568 hasConceptScore W2069687568C132010649 @default.
- W2069687568 hasConceptScore W2069687568C138885662 @default.
- W2069687568 hasConceptScore W2069687568C154945302 @default.
- W2069687568 hasConceptScore W2069687568C201797286 @default.
- W2069687568 hasConceptScore W2069687568C20901353 @default.
- W2069687568 hasConceptScore W2069687568C23123220 @default.
- W2069687568 hasConceptScore W2069687568C41008148 @default.
- W2069687568 hasConceptScore W2069687568C58166 @default.
- W2069687568 hasConceptScore W2069687568C60644358 @default.
- W2069687568 hasConceptScore W2069687568C73555534 @default.
- W2069687568 hasConceptScore W2069687568C86803240 @default.
- W2069687568 hasIssue "3" @default.
- W2069687568 hasLocation W20696875681 @default.
- W2069687568 hasLocation W20696875682 @default.
- W2069687568 hasOpenAccess W2069687568 @default.
- W2069687568 hasPrimaryLocation W20696875681 @default.
- W2069687568 hasRelatedWork W1983932473 @default.
- W2069687568 hasRelatedWork W2010820122 @default.
- W2069687568 hasRelatedWork W2149097927 @default.
- W2069687568 hasRelatedWork W2157911533 @default.
- W2069687568 hasRelatedWork W2472808741 @default.
- W2069687568 hasRelatedWork W2555437174 @default.
- W2069687568 hasRelatedWork W2557918338 @default.
- W2069687568 hasRelatedWork W2604904921 @default.
- W2069687568 hasRelatedWork W4249931853 @default.
- W2069687568 hasRelatedWork W2186255480 @default.
- W2069687568 hasVolume "88" @default.
- W2069687568 isParatext "false" @default.
- W2069687568 isRetracted "false" @default.
- W2069687568 magId "2069687568" @default.
- W2069687568 workType "article" @default.