Matches in SemOpenAlex for { <https://semopenalex.org/work/W2069771572> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2069771572 endingPage "1388" @default.
- W2069771572 startingPage "1357" @default.
- W2069771572 abstract "We develop an operator method which helps finding exact solutions to nonlinear evolution equations (NLEs). Our working schema goes as follows: First we translate the given (NLE) into an appropriate operator version (ONLE). Second, we look for solutions to (ONLE) of the form U=(I+L)−1M, where both L and M are operator-valued functions of the space–time variables and the range of M locates in some appropriate Banach algebras which admits a functional φ that preserves the squares [i.e., φ(A2)=φ(A)2]. Finally, a solution u of the given (NLE) can be obtained by setting u≔φ(U). This method is named by the LM method. Using the LM method, we have rederived the famous Cole–Hopf transformation which reduces the nonlinear Burgers equation into the linear heat equation. The main part of this article is to use the LM method to study the vector Korteweg–de Vries (KdV) equations ut=uxxx+3(u2)x settled in finite-dimensional unital Banach algebras J. It is shown that these vector KdV equations admit soliton solutions. Specially, we have carried out a thorough study of the quaternionic KdV equation (i.e., the vector KdV equation settled in the Hamilton quaternion algebra H) and shown many interesting and surprising aspects of the quaternionic KdV solitons. Two of them read as follows. (a) The paradoxical energy symmetry breaking phenomenon: Two quaternionic KdV solitons with different energies can annihilate each other. (b) The surprising low-dimensional phenomenon: The interaction of any finitely many quaternionic KdV solitons which live in a unital three-dimensional subspace Π of H does not yield any effect to the part outside that subspace Π and thus their interaction behaves as if it were linear although the interaction between quaternionic KdV solitons is really nonlinear. The LM method can be thought as a complement to the famous bilinear operator method of Hirota. Hirota’s method works very powerful for solving scalar equation but has difficulty with vector equations. The LM method helps overcoming this difficulty." @default.
- W2069771572 created "2016-06-24" @default.
- W2069771572 creator A5045912702 @default.
- W2069771572 date "2003-03-01" @default.
- W2069771572 modified "2023-09-25" @default.
- W2069771572 title "An operator method for finding exact solutions to vector Korteweg–de Vries equations" @default.
- W2069771572 cites W1970321200 @default.
- W2069771572 cites W2048718239 @default.
- W2069771572 cites W2071746230 @default.
- W2069771572 cites W2086673715 @default.
- W2069771572 cites W2089996117 @default.
- W2069771572 cites W2106746318 @default.
- W2069771572 cites W2154623568 @default.
- W2069771572 cites W3004901946 @default.
- W2069771572 doi "https://doi.org/10.1063/1.1544414" @default.
- W2069771572 hasPublicationYear "2003" @default.
- W2069771572 type Work @default.
- W2069771572 sameAs 2069771572 @default.
- W2069771572 citedByCount "8" @default.
- W2069771572 countsByYear W20697715722013 @default.
- W2069771572 countsByYear W20697715722018 @default.
- W2069771572 countsByYear W20697715722020 @default.
- W2069771572 crossrefType "journal-article" @default.
- W2069771572 hasAuthorship W2069771572A5045912702 @default.
- W2069771572 hasConcept C104317684 @default.
- W2069771572 hasConcept C121332964 @default.
- W2069771572 hasConcept C132954091 @default.
- W2069771572 hasConcept C134306372 @default.
- W2069771572 hasConcept C136119220 @default.
- W2069771572 hasConcept C146630112 @default.
- W2069771572 hasConcept C158448853 @default.
- W2069771572 hasConcept C158622935 @default.
- W2069771572 hasConcept C17020691 @default.
- W2069771572 hasConcept C185592680 @default.
- W2069771572 hasConcept C202444582 @default.
- W2069771572 hasConcept C33923547 @default.
- W2069771572 hasConcept C37914503 @default.
- W2069771572 hasConcept C55493867 @default.
- W2069771572 hasConcept C62520636 @default.
- W2069771572 hasConcept C86339819 @default.
- W2069771572 hasConceptScore W2069771572C104317684 @default.
- W2069771572 hasConceptScore W2069771572C121332964 @default.
- W2069771572 hasConceptScore W2069771572C132954091 @default.
- W2069771572 hasConceptScore W2069771572C134306372 @default.
- W2069771572 hasConceptScore W2069771572C136119220 @default.
- W2069771572 hasConceptScore W2069771572C146630112 @default.
- W2069771572 hasConceptScore W2069771572C158448853 @default.
- W2069771572 hasConceptScore W2069771572C158622935 @default.
- W2069771572 hasConceptScore W2069771572C17020691 @default.
- W2069771572 hasConceptScore W2069771572C185592680 @default.
- W2069771572 hasConceptScore W2069771572C202444582 @default.
- W2069771572 hasConceptScore W2069771572C33923547 @default.
- W2069771572 hasConceptScore W2069771572C37914503 @default.
- W2069771572 hasConceptScore W2069771572C55493867 @default.
- W2069771572 hasConceptScore W2069771572C62520636 @default.
- W2069771572 hasConceptScore W2069771572C86339819 @default.
- W2069771572 hasIssue "3" @default.
- W2069771572 hasLocation W20697715721 @default.
- W2069771572 hasOpenAccess W2069771572 @default.
- W2069771572 hasPrimaryLocation W20697715721 @default.
- W2069771572 hasRelatedWork W1967318961 @default.
- W2069771572 hasRelatedWork W1988145293 @default.
- W2069771572 hasRelatedWork W2010457177 @default.
- W2069771572 hasRelatedWork W2028672743 @default.
- W2069771572 hasRelatedWork W2170662346 @default.
- W2069771572 hasRelatedWork W2215933046 @default.
- W2069771572 hasRelatedWork W2278466645 @default.
- W2069771572 hasRelatedWork W2484751614 @default.
- W2069771572 hasRelatedWork W2964289859 @default.
- W2069771572 hasRelatedWork W2169668784 @default.
- W2069771572 hasVolume "44" @default.
- W2069771572 isParatext "false" @default.
- W2069771572 isRetracted "false" @default.
- W2069771572 magId "2069771572" @default.
- W2069771572 workType "article" @default.