Matches in SemOpenAlex for { <https://semopenalex.org/work/W2069791369> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2069791369 endingPage "215" @default.
- W2069791369 startingPage "197" @default.
- W2069791369 abstract "Biomarker discovery from high-dimensional data is a complex task in the development of efficient cancer diagnoses and classification. However, these data are usually redundant and noisy, and only a subset of them present distinct profiles for different classes of samples. Thus, selecting high discriminative genes from gene expression data has become increasingly interesting in the field of bioinformatics. In this paper, a discrete biogeography based optimization is proposed to select the good subset of informative gene relevant to the classification. In the proposed algorithm, firstly, the fisher-markov selector is used to choose fixed number of gene data. Secondly, to make biogeography based optimization suitable for the feature selection problem; discrete migration model and discrete mutation model are proposed to balance the exploration and exploitation ability. Then, discrete biogeography based optimization, as we called DBBO, is proposed by integrating discrete migration model and discrete mutation model. Finally, the DBBO method is used for feature selection, and three classifiers are used as the classifier with the 10 fold cross-validation method. In order to show the effective and efficiency of the algorithm, the proposed algorithm is tested on four breast cancer dataset benchmarks. Comparison with genetic algorithm, particle swarm optimization, differential evolution algorithm and hybrid biogeography based optimization, experimental results demonstrate that the proposed method is better or at least comparable with previous method from literature when considering the quality of the solutions obtained." @default.
- W2069791369 created "2016-06-24" @default.
- W2069791369 creator A5002127716 @default.
- W2069791369 creator A5002179911 @default.
- W2069791369 creator A5035841408 @default.
- W2069791369 creator A5090815103 @default.
- W2069791369 date "2015-03-20" @default.
- W2069791369 modified "2023-10-10" @default.
- W2069791369 title "Discrete Biogeography Based Optimization for Feature Selection in Molecular Signatures" @default.
- W2069791369 cites W1892848734 @default.
- W2069791369 cites W1963573921 @default.
- W2069791369 cites W1964654080 @default.
- W2069791369 cites W1976516122 @default.
- W2069791369 cites W2007999904 @default.
- W2069791369 cites W2009207502 @default.
- W2069791369 cites W2010993344 @default.
- W2069791369 cites W2011949224 @default.
- W2069791369 cites W2017337590 @default.
- W2069791369 cites W2027902860 @default.
- W2069791369 cites W2028110948 @default.
- W2069791369 cites W2030363461 @default.
- W2069791369 cites W2038200226 @default.
- W2069791369 cites W2043767998 @default.
- W2069791369 cites W2046321562 @default.
- W2069791369 cites W2056168656 @default.
- W2069791369 cites W2083110812 @default.
- W2069791369 cites W2120975671 @default.
- W2069791369 cites W2124022123 @default.
- W2069791369 cites W2135827569 @default.
- W2069791369 cites W2143426320 @default.
- W2069791369 cites W2143608030 @default.
- W2069791369 cites W2145479420 @default.
- W2069791369 cites W2146739527 @default.
- W2069791369 cites W2149870286 @default.
- W2069791369 cites W2165783263 @default.
- W2069791369 cites W2168081761 @default.
- W2069791369 cites W2168546553 @default.
- W2069791369 cites W2170989872 @default.
- W2069791369 cites W2496873146 @default.
- W2069791369 cites W50145612 @default.
- W2069791369 doi "https://doi.org/10.1002/minf.201400065" @default.
- W2069791369 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27490166" @default.
- W2069791369 hasPublicationYear "2015" @default.
- W2069791369 type Work @default.
- W2069791369 sameAs 2069791369 @default.
- W2069791369 citedByCount "17" @default.
- W2069791369 countsByYear W20697913692016 @default.
- W2069791369 countsByYear W20697913692017 @default.
- W2069791369 countsByYear W20697913692018 @default.
- W2069791369 countsByYear W20697913692019 @default.
- W2069791369 countsByYear W20697913692020 @default.
- W2069791369 countsByYear W20697913692021 @default.
- W2069791369 countsByYear W20697913692022 @default.
- W2069791369 countsByYear W20697913692023 @default.
- W2069791369 crossrefType "journal-article" @default.
- W2069791369 hasAuthorship W2069791369A5002127716 @default.
- W2069791369 hasAuthorship W2069791369A5002179911 @default.
- W2069791369 hasAuthorship W2069791369A5035841408 @default.
- W2069791369 hasAuthorship W2069791369A5090815103 @default.
- W2069791369 hasConcept C119857082 @default.
- W2069791369 hasConcept C124101348 @default.
- W2069791369 hasConcept C148483581 @default.
- W2069791369 hasConcept C153180895 @default.
- W2069791369 hasConcept C154945302 @default.
- W2069791369 hasConcept C41008148 @default.
- W2069791369 hasConcept C85617194 @default.
- W2069791369 hasConcept C95623464 @default.
- W2069791369 hasConcept C97931131 @default.
- W2069791369 hasConceptScore W2069791369C119857082 @default.
- W2069791369 hasConceptScore W2069791369C124101348 @default.
- W2069791369 hasConceptScore W2069791369C148483581 @default.
- W2069791369 hasConceptScore W2069791369C153180895 @default.
- W2069791369 hasConceptScore W2069791369C154945302 @default.
- W2069791369 hasConceptScore W2069791369C41008148 @default.
- W2069791369 hasConceptScore W2069791369C85617194 @default.
- W2069791369 hasConceptScore W2069791369C95623464 @default.
- W2069791369 hasConceptScore W2069791369C97931131 @default.
- W2069791369 hasIssue "4" @default.
- W2069791369 hasLocation W20697913691 @default.
- W2069791369 hasLocation W20697913692 @default.
- W2069791369 hasOpenAccess W2069791369 @default.
- W2069791369 hasPrimaryLocation W20697913691 @default.
- W2069791369 hasRelatedWork W1482209366 @default.
- W2069791369 hasRelatedWork W1598207381 @default.
- W2069791369 hasRelatedWork W2110523656 @default.
- W2069791369 hasRelatedWork W2153315159 @default.
- W2069791369 hasRelatedWork W2521627374 @default.
- W2069791369 hasRelatedWork W259157601 @default.
- W2069791369 hasRelatedWork W2761785940 @default.
- W2069791369 hasRelatedWork W2965546495 @default.
- W2069791369 hasRelatedWork W3103844505 @default.
- W2069791369 hasRelatedWork W4205463238 @default.
- W2069791369 hasVolume "34" @default.
- W2069791369 isParatext "false" @default.
- W2069791369 isRetracted "false" @default.
- W2069791369 magId "2069791369" @default.
- W2069791369 workType "article" @default.