Matches in SemOpenAlex for { <https://semopenalex.org/work/W2069874077> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2069874077 endingPage "2917" @default.
- W2069874077 startingPage "2911" @default.
- W2069874077 abstract "The identity of the source of the biological reductant needed to convert cobalamin to its biologically active form adenosylcobalamin has remained elusive. Here we show that free or protein-bound dihydroflavins can serve as the reductant of Co2+Cbl bound in the active site of PduO-type ATP-dependent corrinoid adenosyltransferase enzymes. Free dihydroflavins (dihydroriboflavin, FMNH2, and FADH2) effectively drove the adenosylation of Co2+Cbl by the human and bacterial PduO-type enzymes at very low concentrations (1 μm). These data show that adenosyltransferase enzymes lower the thermodynamic barrier of the Co2+ → Co+ reduction needed for the formation of the unique organometalic Co–C bond of adenosylcobalamin. Collectively, our in vivo and in vitro data suggest that cobalamin reductases identified thus far are most likely electron transfer proteins, not enzymes. The identity of the source of the biological reductant needed to convert cobalamin to its biologically active form adenosylcobalamin has remained elusive. Here we show that free or protein-bound dihydroflavins can serve as the reductant of Co2+Cbl bound in the active site of PduO-type ATP-dependent corrinoid adenosyltransferase enzymes. Free dihydroflavins (dihydroriboflavin, FMNH2, and FADH2) effectively drove the adenosylation of Co2+Cbl by the human and bacterial PduO-type enzymes at very low concentrations (1 μm). These data show that adenosyltransferase enzymes lower the thermodynamic barrier of the Co2+ → Co+ reduction needed for the formation of the unique organometalic Co–C bond of adenosylcobalamin. Collectively, our in vivo and in vitro data suggest that cobalamin reductases identified thus far are most likely electron transfer proteins, not enzymes. IntroductionCobalamin (Cbl) 3The abbreviations used are: CblcobalaminAdoCbladenosylcobalamincob(III)alaminCo3+Cblcob(II)alaminCo2+Cblcob(I)alaminCo+CblhATRhuman adenosyltransferaseACAATP:corrinoid adenosyltransferaserTEVrecombinant tobacco etch virusFprferredoxin (flavodoxin) protein reductaseFldAflavodoxin AFMNH2dihydroflavin mononucleotideFADH2dihydroflavin adenine dinucleotideCbicobinamide. is an essential nutrient for animals, lower eukaryotes, and prokaryotes (1Warren M.J. Raux E. Schubert H.L. Escalante-Semerena J.C. Nat. Prod. Rep. 2002; 19: 390-412Crossref PubMed Scopus (321) Google Scholar). Only some archaea and bacteria synthesize AdoCbl de novo, a process that involves at least 25 proteins (1Warren M.J. Raux E. Schubert H.L. Escalante-Semerena J.C. Nat. Prod. Rep. 2002; 19: 390-412Crossref PubMed Scopus (321) Google Scholar). Enzymes that use AdoCbl (AdoCbl, coenzyme B12) catalyze intramolecular rearrangements (2Halpern J. Science. 1985; 227: 869-875Crossref PubMed Scopus (489) Google Scholar, 3Buckel W. Bröker G. Bothe H. Pierik A. Banerjee R. Chemistry and Biochemistry of B12. John Wiley & Sons, Inc., New York1999: 757-782Google Scholar), deaminations (4Bandarian V. Reed G.H. Banerjee R. Chemistry and Biochemistry of B12. John Wiley & Sons, Inc., New York1999: 811-833Google Scholar), dehydrations (5Toraya T. Banerjee R. Chemistry and Biochemistry of B12. John Wiley & Sons, Inc., New York1999: 783-809Google Scholar), reductions (6Fontecave M. Cell. Mol. Life Sci. 1998; 54: 684-695Crossref PubMed Scopus (86) Google Scholar, 7Fontecave M. Mulliez E. Banerjee R. Chemistry and Biochemistry of B12. John Wiley & Sons, Inc., New York1999: 731-756Google Scholar), or reductive dehalogenations (8Wohlfarth G. Diekert G. Banerjee R. Chemistry and Biochemistry of B12. John Wiley & Sons, Inc., New York1999: 871-893Google Scholar). In humans, AdoCbl is required for the metabolism of branched chain amino acids, short chain fatty acids, and cholesterol (9Banerjee R. Chowdhury S. Banerjee R. Chemistry and Biochemistry of B12. John Wiley & Sons, Inc., New York1999: 707-729Google Scholar).The cobalt-carbon bond of AdoCbl lies at the heart of the reactivity of this coenzyme. This is a unique organometallic bond that serves as a radical initiator (10Frey P.A. Hegeman A.D. Enzymatic Reaction Mechanisms. Oxford University Press, Oxford2007: 189-252Google Scholar). ATP:cob(I)alamin adenosyltransferase (ACA) enzymes catalyze the transfer of the adenosyl moiety from ATP to cob(I)alamin, resulting in the formation of this unique cobalt-carbon bond. Three types of ACA enzymes have been described thus far, CobA, PduO, and EutT (11Suh S. Escalante-Semerena J.C. J. Bacteriol. 1995; 177: 921-925Crossref PubMed Google Scholar, 12Johnson C.L. Buszko M.L. Bobik T.A. J. Bacteriol. 2004; 186: 7881-7887Crossref PubMed Scopus (41) Google Scholar, 13Buan N.R. Escalante-Semerena J.C. J. Biol. Chem. 2006; 281: 16971-16977Abstract Full Text Full Text PDF PubMed Scopus (27) Google Scholar). Although ACA enzymes carry out the same reaction, they do not share sequence homology at the nucleotide or amino acid level.For adenosylation to occur, the cobalt ion of corrinoids must be reduced in two consecutive one-electron reductions from Co3+ → Co2+ → Co+ (14Walker G.A. Murphy S. Huennekens F.M. Arch. Biochem. Biophys. 1969; 134: 95-102Crossref PubMed Scopus (59) Google Scholar). We previously reported that the reducing environment of the cell drives the Co3+ → Co2+ reduction (14Walker G.A. Murphy S. Huennekens F.M. Arch. Biochem. Biophys. 1969; 134: 95-102Crossref PubMed Scopus (59) Google Scholar, 15Fonseca M.V. Escalante-Semerena J.C. J. Bacteriol. 2000; 182: 4304-4309Crossref PubMed Scopus (57) Google Scholar). The Co2+ → Co+ reduction, however, is more challenging because the reduction potential of Co2+/+ couple in solution is −610 mV (16Lexa D. Saveant J.M. Acc. Chem. Res. 1983; 16: 235-243Crossref Scopus (375) Google Scholar), which is lower than any known physiological reductant in the cell.To solve this problem, the cell uses ACA enzymes to facilitate the reduction of cob(II)alamin before adenosylation can occur (Fig. 1). In this process, ACA enzymes bind 5-coordinate cob(II)alamin and displace the lower ligand 5,6-dimethylbenzimidazole, resulting in a 4-coordinate cob(II)alamin intermediate that lacks axial ligands (17St Maurice M. Mera P. Park K. Brunold T.C. Escalante-Semerena J.C. Rayment I. Biochemistry. 2008; 47: 5755-5766Crossref PubMed Scopus (42) Google Scholar, 18Stich T.A. Buan N.R. Brunold T.C. J. Am. Chem. Soc. 2004; 126: 9735-9749Crossref PubMed Scopus (105) Google Scholar, 19Stich T.A. Yamanishi M. Banerjee R. Brunold T.C. J. Am. Chem. Soc. 2005; 127: 7660-7661Crossref PubMed Scopus (69) Google Scholar, 20Stich T.A. Buan N.R. Escalante-Semerena J.C. Brunold T.C. J. Am. Chem. Soc. 2005; 127: 8710-8719Crossref PubMed Scopus (69) Google Scholar, 21Mera P.E. St Maurice M. Rayment I. Escalante-Semerena J.C. Biochemistry. 2009; 48: 3138-3145Crossref PubMed Scopus (28) Google Scholar, 22Park K. Mera P.E. Escalante-Semerena J.C. Brunold T.C. Biochemistry. 2008; 47: 9007-9015Crossref PubMed Scopus (27) Google Scholar). In this 4-coordinate cob(II)alamin intermediate, the 3dz2 orbital of the cobalt ion is stabilized, raising the reduction potential ∼250 mV and bringing the reduction potential of Co2+/+Cbl to within physiological range (20Stich T.A. Buan N.R. Escalante-Semerena J.C. Brunold T.C. J. Am. Chem. Soc. 2005; 127: 8710-8719Crossref PubMed Scopus (69) Google Scholar). Recent structural and kinetic analyses revealed that a conserved phenylalanine in the active site of the PduO-type ACA enzyme is critical to the formation of the 4-coordinate cob(II)alamin intermediate (17St Maurice M. Mera P. Park K. Brunold T.C. Escalante-Semerena J.C. Rayment I. Biochemistry. 2008; 47: 5755-5766Crossref PubMed Scopus (42) Google Scholar, 21Mera P.E. St Maurice M. Rayment I. Escalante-Semerena J.C. Biochemistry. 2009; 48: 3138-3145Crossref PubMed Scopus (28) Google Scholar).Even though we now have a better understanding of the mechanism of this unfavorable reduction, we still do not know the identity of the physiological reductant for the Co2+ → Co+ reduction, and how the electron is delivered. This has been a point of interest for several decades. Because the reduction potential of the Co2+ → Co+ reduction in solution is outside the physiological range, all scenarios investigated thus far invoke the participation of a reductase and/or an electron transfer protein.In the case of the CobA ACA enzyme of Salmonella enterica (SeCobA), in vitro evidence for the involvement of a reduction system was reported (23Fonseca M.V. Escalante-Semerena J.C. J. Biol. Chem. 2001; 276: 32101-32108Abstract Full Text Full Text PDF PubMed Scopus (75) Google Scholar). In this case, flavodoxin A (FldA) is reduced by the NADPH-dependent ferredoxin (flavodoxin) protein reductase (Fpr), and reduced FldA transfers one electron to cob(II)alamin present in the active site of SeCobA yielding cob(I)alamin. The latter is the nucleophile that attacks the 5′C of ATP yielding AdoCbl and triphosphate (23Fonseca M.V. Escalante-Semerena J.C. J. Biol. Chem. 2001; 276: 32101-32108Abstract Full Text Full Text PDF PubMed Scopus (75) Google Scholar). The putative role of the Fpr/FldA system in cob(II)alamin reduction was supported by the results from studies of FldA/CobA interactions (24Buan N.R. Escalante-Semerena J.C. J. Biol. Chem. 2005; 280: 40948-40956Abstract Full Text Full Text PDF PubMed Scopus (18) Google Scholar).There are several reports of putative cobalamin reductases in the literature. For example, in Brucella melitensis, the flavoprotein CobR was reported to reduce the cobalt ion from Co3+ → Co2+ → Co+ in several corrinoids, including intermediates of the corrin ring biosynthetic pathway and cobalamin (25Lawrence A.D. Deery E. McLean K.J. Munro A.W. Pickersgill R.W. Rigby S.E. Warren M.J. J. Biol. Chem. 2008; 283: 10813-10821Abstract Full Text Full Text PDF PubMed Scopus (22) Google Scholar).In the case of the PduO-type human adenosyltransferase (hATR), the source of the electron involved in the reduction of cob(II)alamin is unknown, and initial searches for the source of this electron putatively identified methionine synthase reductase (26Leclerc D. Odièvre M. Wu Q. Wilson A. Huizenga J.J. Rozen R. Scherer S.W. Gravel R.A. Gene. 1999; 240: 75-88Crossref PubMed Scopus (52) Google Scholar) as a candidate reductant driving the reaction. This hypothesis was based on results of in vitro studies, which showed that, in the presence of hATR, methionine synthase reductase reduced cob(II)alamin to cob(I)alamin (27Leal N.A. Olteanu H. Banerjee R. Bobik T.A. J. Biol. Chem. 2004; 279: 47536-47542Abstract Full Text Full Text PDF PubMed Scopus (47) Google Scholar). An important caveat to the idea that methionine synthase reductase is the physiological reductant of hATR is that methionine synthase reductase is found in the cytosol, where methionine is synthesized (28Froese D.S. Wu X. Zhang J. Dumas R. Schoel W.M. Amrein M. Gravel R.A. Mol. Genet. Metab. 2008; 94: 68-77Crossref PubMed Scopus (11) Google Scholar), and not in the mitochondrion where AdoCbl synthesis occurs, leaving unanswered the questions about the origin of the electron involved in the hATR reaction.The reductant needed for the synthesis of AdoCbl in bacteria that use PduO-type ACA enzymes is also unknown. Sampson et al. (29Sampson E.M. Johnson C.L. Bobik T.A. Microbiology. 2005; 151: 1169-1177Crossref PubMed Scopus (33) Google Scholar) reported results of in vitro experiments, which suggested that, in S. enterica, the PduS protein catalyzes two consecutive one-electron reductions needed to convert cob(III)alamin to cob(I)alamin. To our knowledge, there is no in vivo evidence to support any of the abovementioned results.In this study, we report the dihydroflavin-dependent reduction of cob(II)alamin to cob(I)alamin, but only when cob(II)alamin is bound to the active site of PduO-type ACA enzymes. We show that flavoproteins, whose functions are unrelated to AdoCbl biosynthesis, can drive PduO-bound cob(II)alamin reduction. IntroductionCobalamin (Cbl) 3The abbreviations used are: CblcobalaminAdoCbladenosylcobalamincob(III)alaminCo3+Cblcob(II)alaminCo2+Cblcob(I)alaminCo+CblhATRhuman adenosyltransferaseACAATP:corrinoid adenosyltransferaserTEVrecombinant tobacco etch virusFprferredoxin (flavodoxin) protein reductaseFldAflavodoxin AFMNH2dihydroflavin mononucleotideFADH2dihydroflavin adenine dinucleotideCbicobinamide. is an essential nutrient for animals, lower eukaryotes, and prokaryotes (1Warren M.J. Raux E. Schubert H.L. Escalante-Semerena J.C. Nat. Prod. Rep. 2002; 19: 390-412Crossref PubMed Scopus (321) Google Scholar). Only some archaea and bacteria synthesize AdoCbl de novo, a process that involves at least 25 proteins (1Warren M.J. Raux E. Schubert H.L. Escalante-Semerena J.C. Nat. Prod. Rep. 2002; 19: 390-412Crossref PubMed Scopus (321) Google Scholar). Enzymes that use AdoCbl (AdoCbl, coenzyme B12) catalyze intramolecular rearrangements (2Halpern J. Science. 1985; 227: 869-875Crossref PubMed Scopus (489) Google Scholar, 3Buckel W. Bröker G. Bothe H. Pierik A. Banerjee R. Chemistry and Biochemistry of B12. John Wiley & Sons, Inc., New York1999: 757-782Google Scholar), deaminations (4Bandarian V. Reed G.H. Banerjee R. Chemistry and Biochemistry of B12. John Wiley & Sons, Inc., New York1999: 811-833Google Scholar), dehydrations (5Toraya T. Banerjee R. Chemistry and Biochemistry of B12. John Wiley & Sons, Inc., New York1999: 783-809Google Scholar), reductions (6Fontecave M. Cell. Mol. Life Sci. 1998; 54: 684-695Crossref PubMed Scopus (86) Google Scholar, 7Fontecave M. Mulliez E. Banerjee R. Chemistry and Biochemistry of B12. John Wiley & Sons, Inc., New York1999: 731-756Google Scholar), or reductive dehalogenations (8Wohlfarth G. Diekert G. Banerjee R. Chemistry and Biochemistry of B12. John Wiley & Sons, Inc., New York1999: 871-893Google Scholar). In humans, AdoCbl is required for the metabolism of branched chain amino acids, short chain fatty acids, and cholesterol (9Banerjee R. Chowdhury S. Banerjee R. Chemistry and Biochemistry of B12. John Wiley & Sons, Inc., New York1999: 707-729Google Scholar).The cobalt-carbon bond of AdoCbl lies at the heart of the reactivity of this coenzyme. This is a unique organometallic bond that serves as a radical initiator (10Frey P.A. Hegeman A.D. Enzymatic Reaction Mechanisms. Oxford University Press, Oxford2007: 189-252Google Scholar). ATP:cob(I)alamin adenosyltransferase (ACA) enzymes catalyze the transfer of the adenosyl moiety from ATP to cob(I)alamin, resulting in the formation of this unique cobalt-carbon bond. Three types of ACA enzymes have been described thus far, CobA, PduO, and EutT (11Suh S. Escalante-Semerena J.C. J. Bacteriol. 1995; 177: 921-925Crossref PubMed Google Scholar, 12Johnson C.L. Buszko M.L. Bobik T.A. J. Bacteriol. 2004; 186: 7881-7887Crossref PubMed Scopus (41) Google Scholar, 13Buan N.R. Escalante-Semerena J.C. J. Biol. Chem. 2006; 281: 16971-16977Abstract Full Text Full Text PDF PubMed Scopus (27) Google Scholar). Although ACA enzymes carry out the same reaction, they do not share sequence homology at the nucleotide or amino acid level.For adenosylation to occur, the cobalt ion of corrinoids must be reduced in two consecutive one-electron reductions from Co3+ → Co2+ → Co+ (14Walker G.A. Murphy S. Huennekens F.M. Arch. Biochem. Biophys. 1969; 134: 95-102Crossref PubMed Scopus (59) Google Scholar). We previously reported that the reducing environment of the cell drives the Co3+ → Co2+ reduction (14Walker G.A. Murphy S. Huennekens F.M. Arch. Biochem. Biophys. 1969; 134: 95-102Crossref PubMed Scopus (59) Google Scholar, 15Fonseca M.V. Escalante-Semerena J.C. J. Bacteriol. 2000; 182: 4304-4309Crossref PubMed Scopus (57) Google Scholar). The Co2+ → Co+ reduction, however, is more challenging because the reduction potential of Co2+/+ couple in solution is −610 mV (16Lexa D. Saveant J.M. Acc. Chem. Res. 1983; 16: 235-243Crossref Scopus (375) Google Scholar), which is lower than any known physiological reductant in the cell.To solve this problem, the cell uses ACA enzymes to facilitate the reduction of cob(II)alamin before adenosylation can occur (Fig. 1). In this process, ACA enzymes bind 5-coordinate cob(II)alamin and displace the lower ligand 5,6-dimethylbenzimidazole, resulting in a 4-coordinate cob(II)alamin intermediate that lacks axial ligands (17St Maurice M. Mera P. Park K. Brunold T.C. Escalante-Semerena J.C. Rayment I. Biochemistry. 2008; 47: 5755-5766Crossref PubMed Scopus (42) Google Scholar, 18Stich T.A. Buan N.R. Brunold T.C. J. Am. Chem. Soc. 2004; 126: 9735-9749Crossref PubMed Scopus (105) Google Scholar, 19Stich T.A. Yamanishi M. Banerjee R. Brunold T.C. J. Am. Chem. Soc. 2005; 127: 7660-7661Crossref PubMed Scopus (69) Google Scholar, 20Stich T.A. Buan N.R. Escalante-Semerena J.C. Brunold T.C. J. Am. Chem. Soc. 2005; 127: 8710-8719Crossref PubMed Scopus (69) Google Scholar, 21Mera P.E. St Maurice M. Rayment I. Escalante-Semerena J.C. Biochemistry. 2009; 48: 3138-3145Crossref PubMed Scopus (28) Google Scholar, 22Park K. Mera P.E. Escalante-Semerena J.C. Brunold T.C. Biochemistry. 2008; 47: 9007-9015Crossref PubMed Scopus (27) Google Scholar). In this 4-coordinate cob(II)alamin intermediate, the 3dz2 orbital of the cobalt ion is stabilized, raising the reduction potential ∼250 mV and bringing the reduction potential of Co2+/+Cbl to within physiological range (20Stich T.A. Buan N.R. Escalante-Semerena J.C. Brunold T.C. J. Am. Chem. Soc. 2005; 127: 8710-8719Crossref PubMed Scopus (69) Google Scholar). Recent structural and kinetic analyses revealed that a conserved phenylalanine in the active site of the PduO-type ACA enzyme is critical to the formation of the 4-coordinate cob(II)alamin intermediate (17St Maurice M. Mera P. Park K. Brunold T.C. Escalante-Semerena J.C. Rayment I. Biochemistry. 2008; 47: 5755-5766Crossref PubMed Scopus (42) Google Scholar, 21Mera P.E. St Maurice M. Rayment I. Escalante-Semerena J.C. Biochemistry. 2009; 48: 3138-3145Crossref PubMed Scopus (28) Google Scholar).Even though we now have a better understanding of the mechanism of this unfavorable reduction, we still do not know the identity of the physiological reductant for the Co2+ → Co+ reduction, and how the electron is delivered. This has been a point of interest for several decades. Because the reduction potential of the Co2+ → Co+ reduction in solution is outside the physiological range, all scenarios investigated thus far invoke the participation of a reductase and/or an electron transfer protein.In the case of the CobA ACA enzyme of Salmonella enterica (SeCobA), in vitro evidence for the involvement of a reduction system was reported (23Fonseca M.V. Escalante-Semerena J.C. J. Biol. Chem. 2001; 276: 32101-32108Abstract Full Text Full Text PDF PubMed Scopus (75) Google Scholar). In this case, flavodoxin A (FldA) is reduced by the NADPH-dependent ferredoxin (flavodoxin) protein reductase (Fpr), and reduced FldA transfers one electron to cob(II)alamin present in the active site of SeCobA yielding cob(I)alamin. The latter is the nucleophile that attacks the 5′C of ATP yielding AdoCbl and triphosphate (23Fonseca M.V. Escalante-Semerena J.C. J. Biol. Chem. 2001; 276: 32101-32108Abstract Full Text Full Text PDF PubMed Scopus (75) Google Scholar). The putative role of the Fpr/FldA system in cob(II)alamin reduction was supported by the results from studies of FldA/CobA interactions (24Buan N.R. Escalante-Semerena J.C. J. Biol. Chem. 2005; 280: 40948-40956Abstract Full Text Full Text PDF PubMed Scopus (18) Google Scholar).There are several reports of putative cobalamin reductases in the literature. For example, in Brucella melitensis, the flavoprotein CobR was reported to reduce the cobalt ion from Co3+ → Co2+ → Co+ in several corrinoids, including intermediates of the corrin ring biosynthetic pathway and cobalamin (25Lawrence A.D. Deery E. McLean K.J. Munro A.W. Pickersgill R.W. Rigby S.E. Warren M.J. J. Biol. Chem. 2008; 283: 10813-10821Abstract Full Text Full Text PDF PubMed Scopus (22) Google Scholar).In the case of the PduO-type human adenosyltransferase (hATR), the source of the electron involved in the reduction of cob(II)alamin is unknown, and initial searches for the source of this electron putatively identified methionine synthase reductase (26Leclerc D. Odièvre M. Wu Q. Wilson A. Huizenga J.J. Rozen R. Scherer S.W. Gravel R.A. Gene. 1999; 240: 75-88Crossref PubMed Scopus (52) Google Scholar) as a candidate reductant driving the reaction. This hypothesis was based on results of in vitro studies, which showed that, in the presence of hATR, methionine synthase reductase reduced cob(II)alamin to cob(I)alamin (27Leal N.A. Olteanu H. Banerjee R. Bobik T.A. J. Biol. Chem. 2004; 279: 47536-47542Abstract Full Text Full Text PDF PubMed Scopus (47) Google Scholar). An important caveat to the idea that methionine synthase reductase is the physiological reductant of hATR is that methionine synthase reductase is found in the cytosol, where methionine is synthesized (28Froese D.S. Wu X. Zhang J. Dumas R. Schoel W.M. Amrein M. Gravel R.A. Mol. Genet. Metab. 2008; 94: 68-77Crossref PubMed Scopus (11) Google Scholar), and not in the mitochondrion where AdoCbl synthesis occurs, leaving unanswered the questions about the origin of the electron involved in the hATR reaction.The reductant needed for the synthesis of AdoCbl in bacteria that use PduO-type ACA enzymes is also unknown. Sampson et al. (29Sampson E.M. Johnson C.L. Bobik T.A. Microbiology. 2005; 151: 1169-1177Crossref PubMed Scopus (33) Google Scholar) reported results of in vitro experiments, which suggested that, in S. enterica, the PduS protein catalyzes two consecutive one-electron reductions needed to convert cob(III)alamin to cob(I)alamin. To our knowledge, there is no in vivo evidence to support any of the abovementioned results.In this study, we report the dihydroflavin-dependent reduction of cob(II)alamin to cob(I)alamin, but only when cob(II)alamin is bound to the active site of PduO-type ACA enzymes. We show that flavoproteins, whose functions are unrelated to AdoCbl biosynthesis, can drive PduO-bound cob(II)alamin reduction." @default.
- W2069874077 created "2016-06-24" @default.
- W2069874077 creator A5036716991 @default.
- W2069874077 creator A5056279286 @default.
- W2069874077 date "2010-01-01" @default.
- W2069874077 modified "2023-10-17" @default.
- W2069874077 title "Dihydroflavin-driven Adenosylation of 4-Coordinate Co(II) Corrinoids" @default.
- W2069874077 cites W1480506347 @default.
- W2069874077 cites W1547139981 @default.
- W2069874077 cites W1894714784 @default.
- W2069874077 cites W1943327251 @default.
- W2069874077 cites W1968948024 @default.
- W2069874077 cites W1972400761 @default.
- W2069874077 cites W1972990888 @default.
- W2069874077 cites W1975003062 @default.
- W2069874077 cites W1989282758 @default.
- W2069874077 cites W2007424462 @default.
- W2069874077 cites W2034672527 @default.
- W2069874077 cites W2040633409 @default.
- W2069874077 cites W2045202504 @default.
- W2069874077 cites W2046185555 @default.
- W2069874077 cites W2047468427 @default.
- W2069874077 cites W2059636894 @default.
- W2069874077 cites W2060398638 @default.
- W2069874077 cites W2063146655 @default.
- W2069874077 cites W2068961740 @default.
- W2069874077 cites W2072234490 @default.
- W2069874077 cites W2072631366 @default.
- W2069874077 cites W2076736170 @default.
- W2069874077 cites W2080372186 @default.
- W2069874077 cites W2084127226 @default.
- W2069874077 cites W2085345576 @default.
- W2069874077 cites W2085356948 @default.
- W2069874077 cites W2087098118 @default.
- W2069874077 cites W2095698127 @default.
- W2069874077 cites W2095950274 @default.
- W2069874077 cites W2098518562 @default.
- W2069874077 cites W2098937151 @default.
- W2069874077 cites W2107270211 @default.
- W2069874077 cites W2110615030 @default.
- W2069874077 cites W2113511323 @default.
- W2069874077 cites W2114702800 @default.
- W2069874077 cites W2133941721 @default.
- W2069874077 cites W24251834 @default.
- W2069874077 cites W2940700665 @default.
- W2069874077 doi "https://doi.org/10.1074/jbc.m109.059485" @default.
- W2069874077 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2823439" @default.
- W2069874077 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19933577" @default.
- W2069874077 hasPublicationYear "2010" @default.
- W2069874077 type Work @default.
- W2069874077 sameAs 2069874077 @default.
- W2069874077 citedByCount "32" @default.
- W2069874077 countsByYear W20698740772012 @default.
- W2069874077 countsByYear W20698740772013 @default.
- W2069874077 countsByYear W20698740772014 @default.
- W2069874077 countsByYear W20698740772015 @default.
- W2069874077 countsByYear W20698740772016 @default.
- W2069874077 countsByYear W20698740772017 @default.
- W2069874077 countsByYear W20698740772018 @default.
- W2069874077 countsByYear W20698740772019 @default.
- W2069874077 countsByYear W20698740772020 @default.
- W2069874077 countsByYear W20698740772021 @default.
- W2069874077 countsByYear W20698740772022 @default.
- W2069874077 countsByYear W20698740772023 @default.
- W2069874077 crossrefType "journal-article" @default.
- W2069874077 hasAuthorship W2069874077A5036716991 @default.
- W2069874077 hasAuthorship W2069874077A5056279286 @default.
- W2069874077 hasBestOaLocation W20698740771 @default.
- W2069874077 hasConcept C185592680 @default.
- W2069874077 hasConcept C71240020 @default.
- W2069874077 hasConceptScore W2069874077C185592680 @default.
- W2069874077 hasConceptScore W2069874077C71240020 @default.
- W2069874077 hasIssue "5" @default.
- W2069874077 hasLocation W20698740771 @default.
- W2069874077 hasLocation W20698740772 @default.
- W2069874077 hasLocation W20698740773 @default.
- W2069874077 hasLocation W20698740774 @default.
- W2069874077 hasOpenAccess W2069874077 @default.
- W2069874077 hasPrimaryLocation W20698740771 @default.
- W2069874077 hasRelatedWork W1531601525 @default.
- W2069874077 hasRelatedWork W2319480705 @default.
- W2069874077 hasRelatedWork W2384464875 @default.
- W2069874077 hasRelatedWork W2606230654 @default.
- W2069874077 hasRelatedWork W2607424097 @default.
- W2069874077 hasRelatedWork W2748952813 @default.
- W2069874077 hasRelatedWork W2899084033 @default.
- W2069874077 hasRelatedWork W2948807893 @default.
- W2069874077 hasRelatedWork W4387497383 @default.
- W2069874077 hasRelatedWork W2778153218 @default.
- W2069874077 hasVolume "285" @default.
- W2069874077 isParatext "false" @default.
- W2069874077 isRetracted "false" @default.
- W2069874077 magId "2069874077" @default.
- W2069874077 workType "article" @default.