Matches in SemOpenAlex for { <https://semopenalex.org/work/W2069893807> ?p ?o ?g. }
- W2069893807 endingPage "116" @default.
- W2069893807 startingPage "89" @default.
- W2069893807 abstract "The information-theoretic maximal-entropy procedure for the analysis of collision processes is derived as a consequence of the dynamics, be they quantal or classical. The method centers attention on the minimal number of operators (the dynamic constraints) whose expectation values are both necessary and sufficient to completely characterize the collision dynamics. For a given Hamiltonian and initial state, the constraints required to obtain an exact solution of the equations of motion are determined by a purely algebraic procedure. It is furthermore found possible to derive equations of motion for the conjugate Lagrange parameters. Immediate applications are noted, e.g., a family of similar reactions is shown to have a common set of dynamic constraints and simple illustrative applications are provided. The determination of the scattering matrix is discussed, with examples. The general formalism consists in solving the scattering problem in two stages. The first is purely algebraic. At the end of this stage one obtains the functional form of, say, the scattering matrix or of the density matrix after the collision expressed in terms of parameters whose number equals the number of dynamic constraints. The end result of this algebraic stage suffices to analyze the scattering pattern for any initial state. The second stage is the predictive procedure. Explicit coupled first-order nonlinear differential equations are obtained for the parameters." @default.
- W2069893807 created "2016-06-24" @default.
- W2069893807 creator A5033195005 @default.
- W2069893807 creator A5067865308 @default.
- W2069893807 date "1978-07-01" @default.
- W2069893807 modified "2023-10-14" @default.
- W2069893807 title "Connection between the maximal entropy and the scattering theoretic analyses of collision processes" @default.
- W2069893807 cites W1581811934 @default.
- W2069893807 cites W1603711202 @default.
- W2069893807 cites W1969663246 @default.
- W2069893807 cites W1970710337 @default.
- W2069893807 cites W1972969740 @default.
- W2069893807 cites W1973787174 @default.
- W2069893807 cites W1975016823 @default.
- W2069893807 cites W1976427253 @default.
- W2069893807 cites W1980262512 @default.
- W2069893807 cites W1984270738 @default.
- W2069893807 cites W1988589764 @default.
- W2069893807 cites W1990330490 @default.
- W2069893807 cites W1990334103 @default.
- W2069893807 cites W1998945015 @default.
- W2069893807 cites W1999895943 @default.
- W2069893807 cites W2002858633 @default.
- W2069893807 cites W2013048726 @default.
- W2069893807 cites W2014963493 @default.
- W2069893807 cites W2016176419 @default.
- W2069893807 cites W2018369150 @default.
- W2069893807 cites W2018497636 @default.
- W2069893807 cites W2023715683 @default.
- W2069893807 cites W2024059115 @default.
- W2069893807 cites W2028331728 @default.
- W2069893807 cites W2029641002 @default.
- W2069893807 cites W2029841738 @default.
- W2069893807 cites W2032558547 @default.
- W2069893807 cites W2034065943 @default.
- W2069893807 cites W2034315971 @default.
- W2069893807 cites W2037421652 @default.
- W2069893807 cites W2038066559 @default.
- W2069893807 cites W2039763880 @default.
- W2069893807 cites W2040515769 @default.
- W2069893807 cites W2044634083 @default.
- W2069893807 cites W2044937976 @default.
- W2069893807 cites W2048972702 @default.
- W2069893807 cites W2053159018 @default.
- W2069893807 cites W2060601835 @default.
- W2069893807 cites W2062758204 @default.
- W2069893807 cites W2068398935 @default.
- W2069893807 cites W2073242727 @default.
- W2069893807 cites W2074573088 @default.
- W2069893807 cites W2081840741 @default.
- W2069893807 cites W2094966002 @default.
- W2069893807 cites W2104333437 @default.
- W2069893807 cites W2128633210 @default.
- W2069893807 cites W2129589505 @default.
- W2069893807 cites W2143423258 @default.
- W2069893807 cites W2153463401 @default.
- W2069893807 cites W2154276099 @default.
- W2069893807 cites W2228259595 @default.
- W2069893807 cites W3126515415 @default.
- W2069893807 cites W4252028749 @default.
- W2069893807 cites W4255992823 @default.
- W2069893807 doi "https://doi.org/10.1103/physreva.18.89" @default.
- W2069893807 hasPublicationYear "1978" @default.
- W2069893807 type Work @default.
- W2069893807 sameAs 2069893807 @default.
- W2069893807 citedByCount "242" @default.
- W2069893807 countsByYear W20698938072012 @default.
- W2069893807 countsByYear W20698938072013 @default.
- W2069893807 countsByYear W20698938072014 @default.
- W2069893807 countsByYear W20698938072015 @default.
- W2069893807 countsByYear W20698938072016 @default.
- W2069893807 countsByYear W20698938072017 @default.
- W2069893807 countsByYear W20698938072018 @default.
- W2069893807 countsByYear W20698938072019 @default.
- W2069893807 countsByYear W20698938072020 @default.
- W2069893807 countsByYear W20698938072021 @default.
- W2069893807 countsByYear W20698938072022 @default.
- W2069893807 countsByYear W20698938072023 @default.
- W2069893807 crossrefType "journal-article" @default.
- W2069893807 hasAuthorship W2069893807A5033195005 @default.
- W2069893807 hasAuthorship W2069893807A5067865308 @default.
- W2069893807 hasConcept C106301342 @default.
- W2069893807 hasConcept C106487976 @default.
- W2069893807 hasConcept C121332964 @default.
- W2069893807 hasConcept C121704057 @default.
- W2069893807 hasConcept C126255220 @default.
- W2069893807 hasConcept C130787639 @default.
- W2069893807 hasConcept C13355873 @default.
- W2069893807 hasConcept C134306372 @default.
- W2069893807 hasConcept C14037181 @default.
- W2069893807 hasConcept C158622935 @default.
- W2069893807 hasConcept C159985019 @default.
- W2069893807 hasConcept C161094330 @default.
- W2069893807 hasConcept C191486275 @default.
- W2069893807 hasConcept C192562407 @default.
- W2069893807 hasConcept C23917780 @default.
- W2069893807 hasConcept C2524010 @default.
- W2069893807 hasConcept C28826006 @default.