Matches in SemOpenAlex for { <https://semopenalex.org/work/W2070070369> ?p ?o ?g. }
- W2070070369 endingPage "e68888" @default.
- W2070070369 startingPage "e68888" @default.
- W2070070369 abstract "Chemical synaptic transmission involves the release of a neurotransmitter that diffuses in the extracellular space and interacts with specific receptors located on the postsynaptic membrane. Computer simulation approaches provide fundamental tools for exploring various aspects of the synaptic transmission under different conditions. In particular, Monte Carlo methods can track the stochastic movements of neurotransmitter molecules and their interactions with other discrete molecules, the receptors. However, these methods are computationally expensive, even when used with simplified models, preventing their use in large-scale and multi-scale simulations of complex neuronal systems that may involve large numbers of synaptic connections. We have developed a machine-learning based method that can accurately predict relevant aspects of the behavior of synapses, such as the percentage of open synaptic receptors as a function of time since the release of the neurotransmitter, with considerably lower computational cost compared with the conventional Monte Carlo alternative. The method is designed to learn patterns and general principles from a corpus of previously generated Monte Carlo simulations of synapses covering a wide range of structural and functional characteristics. These patterns are later used as a predictive model of the behavior of synapses under different conditions without the need for additional computationally expensive Monte Carlo simulations. This is performed in five stages: data sampling, fold creation, machine learning, validation and curve fitting. The resulting procedure is accurate, automatic, and it is general enough to predict synapse behavior under experimental conditions that are different to the ones it has been trained on. Since our method efficiently reproduces the results that can be obtained with Monte Carlo simulations at a considerably lower computational cost, it is suitable for the simulation of high numbers of synapses and it is therefore an excellent tool for multi-scale simulations." @default.
- W2070070369 created "2016-06-24" @default.
- W2070070369 creator A5011361926 @default.
- W2070070369 creator A5040552736 @default.
- W2070070369 creator A5064290966 @default.
- W2070070369 creator A5066562330 @default.
- W2070070369 creator A5085418566 @default.
- W2070070369 date "2013-07-23" @default.
- W2070070369 modified "2023-10-02" @default.
- W2070070369 title "A Machine Learning Method for the Prediction of Receptor Activation in the Simulation of Synapses" @default.
- W2070070369 cites W1597908762 @default.
- W2070070369 cites W1845163922 @default.
- W2070070369 cites W1897919376 @default.
- W2070070369 cites W1964433270 @default.
- W2070070369 cites W1974974415 @default.
- W2070070369 cites W1980056734 @default.
- W2070070369 cites W1986605182 @default.
- W2070070369 cites W1998397069 @default.
- W2070070369 cites W2009759632 @default.
- W2070070369 cites W2010371675 @default.
- W2070070369 cites W2011139878 @default.
- W2070070369 cites W2012038360 @default.
- W2070070369 cites W2029091896 @default.
- W2070070369 cites W2043679829 @default.
- W2070070369 cites W2044514703 @default.
- W2070070369 cites W2047494050 @default.
- W2070070369 cites W2049437000 @default.
- W2070070369 cites W2072543390 @default.
- W2070070369 cites W2074540503 @default.
- W2070070369 cites W2080611091 @default.
- W2070070369 cites W2082221311 @default.
- W2070070369 cites W2082969312 @default.
- W2070070369 cites W2085323762 @default.
- W2070070369 cites W2086629023 @default.
- W2070070369 cites W2090584164 @default.
- W2070070369 cites W2091886411 @default.
- W2070070369 cites W2093737220 @default.
- W2070070369 cites W2095873412 @default.
- W2070070369 cites W2100483895 @default.
- W2070070369 cites W2102201073 @default.
- W2070070369 cites W2106495485 @default.
- W2070070369 cites W2114881822 @default.
- W2070070369 cites W2117869170 @default.
- W2070070369 cites W2126033464 @default.
- W2070070369 cites W2147084397 @default.
- W2070070369 cites W2154497431 @default.
- W2070070369 cites W2156924285 @default.
- W2070070369 cites W2159133961 @default.
- W2070070369 cites W2168779967 @default.
- W2070070369 cites W2169509065 @default.
- W2070070369 cites W2169875888 @default.
- W2070070369 cites W3146376608 @default.
- W2070070369 cites W4214775604 @default.
- W2070070369 cites W4251686894 @default.
- W2070070369 doi "https://doi.org/10.1371/journal.pone.0068888" @default.
- W2070070369 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3720878" @default.
- W2070070369 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23894367" @default.
- W2070070369 hasPublicationYear "2013" @default.
- W2070070369 type Work @default.
- W2070070369 sameAs 2070070369 @default.
- W2070070369 citedByCount "6" @default.
- W2070070369 countsByYear W20700703692015 @default.
- W2070070369 countsByYear W20700703692017 @default.
- W2070070369 countsByYear W20700703692018 @default.
- W2070070369 countsByYear W20700703692019 @default.
- W2070070369 crossrefType "journal-article" @default.
- W2070070369 hasAuthorship W2070070369A5011361926 @default.
- W2070070369 hasAuthorship W2070070369A5040552736 @default.
- W2070070369 hasAuthorship W2070070369A5064290966 @default.
- W2070070369 hasAuthorship W2070070369A5066562330 @default.
- W2070070369 hasAuthorship W2070070369A5085418566 @default.
- W2070070369 hasBestOaLocation W20700703691 @default.
- W2070070369 hasConcept C105795698 @default.
- W2070070369 hasConcept C119857082 @default.
- W2070070369 hasConcept C127445978 @default.
- W2070070369 hasConcept C154945302 @default.
- W2070070369 hasConcept C156927020 @default.
- W2070070369 hasConcept C169760540 @default.
- W2070070369 hasConcept C170493617 @default.
- W2070070369 hasConcept C185592680 @default.
- W2070070369 hasConcept C186060115 @default.
- W2070070369 hasConcept C19499675 @default.
- W2070070369 hasConcept C197341189 @default.
- W2070070369 hasConcept C200170125 @default.
- W2070070369 hasConcept C2776219046 @default.
- W2070070369 hasConcept C2993285035 @default.
- W2070070369 hasConcept C33923547 @default.
- W2070070369 hasConcept C41008148 @default.
- W2070070369 hasConcept C529278444 @default.
- W2070070369 hasConcept C55493867 @default.
- W2070070369 hasConcept C86803240 @default.
- W2070070369 hasConceptScore W2070070369C105795698 @default.
- W2070070369 hasConceptScore W2070070369C119857082 @default.
- W2070070369 hasConceptScore W2070070369C127445978 @default.
- W2070070369 hasConceptScore W2070070369C154945302 @default.
- W2070070369 hasConceptScore W2070070369C156927020 @default.
- W2070070369 hasConceptScore W2070070369C169760540 @default.
- W2070070369 hasConceptScore W2070070369C170493617 @default.