Matches in SemOpenAlex for { <https://semopenalex.org/work/W2070071411> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2070071411 abstract "Novel contact architectures to n-Silicon (n-Si) and to n-Germanium (n-Ge) were benchmarked for the first time against the state-of-the-art contact architecture to n-Si. It was found that although the recently reported contact architectures to n-Ge exhibit markedly improved performance, more work must be done to match state-of the-art NiSi/n-Si contact architecture in terms of current-carrying capability. With the continued scaling of contact length in accordance with Moore's law, the interface resistance between metal and semiconductor has become a critical area of focus to achieve the required targets for lower external series resistance (Fig. 1, Fig. 2). Prior studies have shown effective pathways to lower the interface resistance for p-MOSFETs, like the use of narrow bandgap Silicon-Germanium (SiGe) compounds in Source/Drain (S/D) regions in silicon channel transistors. In addition, the use of a Germanium channel device provides inherent benefit of Fermi-level pinning near the valence band for contacts to p-Ge S/D. Alternative contact architectures are now being sought to improve the interface contact resistance to n-Si (for Silicon channel CMOS) and to n-Ge (for Germanium channel CMOS) by reducing the Schottky Barrier Height (SBH) between metal and n-type S/D semiconductors. In this work, a metric which is based on current density (J) at given semiconductor doping density (ND) was found to be most suitable for benchmarking contact architectures of widely varying maturities. Metal-Insulator-Semiconductor (MIS) contact architecture, in contrast to current Metal-Semiconductor (MS) architecture, has been proposed to reduce SBH by unpinning the Fermi level [1-2]. There is a concern, however, that the insertion of a high bandgap oxide results in large tunnel resistance and would offset the positive effect of Fermi level unpinning. It is therefore necessary to benchmark the current-carrying capability of the MIS contact architectures on both n-Si and n-Ge with respect to state-of-the-art solution. Since J depends exponentially on ND, we propose to use J versus ND as a way to benchmark different MIS contact architectures. The reference NiSi/n-Si and PtSi/n-Si current density data was obtained from [3], and J vs. ND data was fitted to an analytical model [4]. A SBH of 0.55eV provided best fit (Fig. 4), consistent with numerical QM analysis done on the same data set [5]. It is also consistent with values extracted on nanoscale contacts for NiPtSi/n-Si contact architecture with heavily doped S/D semiconductor (31020 cm-3) [6]. In one study, a TaN/LaO/n-Si (MIS) contact stack [2] is benchmarked against the NiSi/n-Si reference system in Fig. 5. The TaN/LaO/n-Si contact stack provides a very promising result. The benefit demonstrated at low ND, however, needs to be demonstrated at ND 31020 cm-3. Various contact architectures to n-Ge are also benchmarked using J vs. ND plot in Fig. 6. Data was taken from [1, 7-10]. When an insulator is inserted between the metal and n-Ge, J is attenuated due to the insulator energy barrier. For example see TiO2/n-Ge, AlO/n-Ge, MgO/n-Ge data points which are lower than the reference line. This leads us to conclude that the MIS contact architecture on n-Ge currently underperforms state-of-the-art NiSi/n-Si system." @default.
- W2070071411 created "2016-06-24" @default.
- W2070071411 creator A5022765230 @default.
- W2070071411 creator A5033750137 @default.
- W2070071411 creator A5036105393 @default.
- W2070071411 creator A5084959928 @default.
- W2070071411 date "2012-06-01" @default.
- W2070071411 modified "2023-09-28" @default.
- W2070071411 title "Benchmarking of Novel Contact Architectures on Silicon and Germanium" @default.
- W2070071411 cites W1974643526 @default.
- W2070071411 cites W1984867741 @default.
- W2070071411 cites W1999099550 @default.
- W2070071411 cites W2005821446 @default.
- W2070071411 cites W2013241315 @default.
- W2070071411 cites W2021454175 @default.
- W2070071411 cites W2027626977 @default.
- W2070071411 cites W2054136483 @default.
- W2070071411 cites W2090226293 @default.
- W2070071411 cites W2103845540 @default.
- W2070071411 cites W2125286558 @default.
- W2070071411 cites W2130195434 @default.
- W2070071411 cites W2143211096 @default.
- W2070071411 cites W2165003161 @default.
- W2070071411 cites W35896116 @default.
- W2070071411 doi "https://doi.org/10.1109/istdm.2012.6222471" @default.
- W2070071411 hasPublicationYear "2012" @default.
- W2070071411 type Work @default.
- W2070071411 sameAs 2070071411 @default.
- W2070071411 citedByCount "0" @default.
- W2070071411 crossrefType "proceedings-article" @default.
- W2070071411 hasAuthorship W2070071411A5022765230 @default.
- W2070071411 hasAuthorship W2070071411A5033750137 @default.
- W2070071411 hasAuthorship W2070071411A5036105393 @default.
- W2070071411 hasAuthorship W2070071411A5084959928 @default.
- W2070071411 hasConcept C108225325 @default.
- W2070071411 hasConcept C119599485 @default.
- W2070071411 hasConcept C123671423 @default.
- W2070071411 hasConcept C127413603 @default.
- W2070071411 hasConcept C16115445 @default.
- W2070071411 hasConcept C171250308 @default.
- W2070071411 hasConcept C192562407 @default.
- W2070071411 hasConcept C24326235 @default.
- W2070071411 hasConcept C2779227376 @default.
- W2070071411 hasConcept C46362747 @default.
- W2070071411 hasConcept C49040817 @default.
- W2070071411 hasConcept C544956773 @default.
- W2070071411 hasConcept C550623735 @default.
- W2070071411 hasConcept C61696701 @default.
- W2070071411 hasConcept C78434282 @default.
- W2070071411 hasConceptScore W2070071411C108225325 @default.
- W2070071411 hasConceptScore W2070071411C119599485 @default.
- W2070071411 hasConceptScore W2070071411C123671423 @default.
- W2070071411 hasConceptScore W2070071411C127413603 @default.
- W2070071411 hasConceptScore W2070071411C16115445 @default.
- W2070071411 hasConceptScore W2070071411C171250308 @default.
- W2070071411 hasConceptScore W2070071411C192562407 @default.
- W2070071411 hasConceptScore W2070071411C24326235 @default.
- W2070071411 hasConceptScore W2070071411C2779227376 @default.
- W2070071411 hasConceptScore W2070071411C46362747 @default.
- W2070071411 hasConceptScore W2070071411C49040817 @default.
- W2070071411 hasConceptScore W2070071411C544956773 @default.
- W2070071411 hasConceptScore W2070071411C550623735 @default.
- W2070071411 hasConceptScore W2070071411C61696701 @default.
- W2070071411 hasConceptScore W2070071411C78434282 @default.
- W2070071411 hasLocation W20700714111 @default.
- W2070071411 hasOpenAccess W2070071411 @default.
- W2070071411 hasPrimaryLocation W20700714111 @default.
- W2070071411 hasRelatedWork W123379021 @default.
- W2070071411 hasRelatedWork W1512390337 @default.
- W2070071411 hasRelatedWork W1926528629 @default.
- W2070071411 hasRelatedWork W1992567568 @default.
- W2070071411 hasRelatedWork W2095897640 @default.
- W2070071411 hasRelatedWork W2111184962 @default.
- W2070071411 hasRelatedWork W2120850642 @default.
- W2070071411 hasRelatedWork W2125391584 @default.
- W2070071411 hasRelatedWork W2149110033 @default.
- W2070071411 hasRelatedWork W2168354840 @default.
- W2070071411 hasRelatedWork W2284943117 @default.
- W2070071411 hasRelatedWork W2737262779 @default.
- W2070071411 hasRelatedWork W2807735680 @default.
- W2070071411 hasRelatedWork W2967256303 @default.
- W2070071411 hasRelatedWork W3200058465 @default.
- W2070071411 hasRelatedWork W37365370 @default.
- W2070071411 hasRelatedWork W1520396407 @default.
- W2070071411 hasRelatedWork W2279069927 @default.
- W2070071411 hasRelatedWork W2415371582 @default.
- W2070071411 hasRelatedWork W3100919555 @default.
- W2070071411 isParatext "false" @default.
- W2070071411 isRetracted "false" @default.
- W2070071411 magId "2070071411" @default.
- W2070071411 workType "article" @default.