Matches in SemOpenAlex for { <https://semopenalex.org/work/W2070087268> ?p ?o ?g. }
- W2070087268 abstract "In a recent paper (arXiv:0911.2514), one of us (FYW) considered the Potts model and bond and site percolation on two general classes of two-dimensional lattices, the triangular-type and kagome-type lattices, and obtained closed-form expressions for the critical frontier with applications to various lattice models. For the triangular-type lattices Wu's result is exact, and for the kagome-type lattices Wu's expression is under a homogeneity assumption. The purpose of the present paper is two-fold: First, an essential step in Wu's analysis is the derivation of lattice-dependent constants $A, B, C$ for various lattice models, a process which can be tedious. We present here a derivation of these constants for subnet networks using a computer algorithm. Secondly, by means of a finite-size scaling analysis based on numerical transfer matrix calculations, we deduce critical properties and critical thresholds of various models and assess the accuracy of the homogeneity assumption. Specifically, we analyze the $q$-state Potts model and the bond percolation on the 3-12 and kagome-type subnet lattices $(ntimes n):(ntimes n)$, $nleq 4$, for which the exact solution is not known. To calibrate the accuracy of the finite-size procedure, we apply the same numerical analysis to models for which the exact critical frontiers are known. The comparison of numerical and exact results shows that our numerical determination of critical thresholds is accurate to 7 or 8 significant digits. This in turn infers that the homogeneity assumption determines critical frontiers with an accuracy of 5 decimal places or higher. Finally, we also obtained the exact percolation thresholds for site percolation on kagome-type subnet lattices $(1times 1):(ntimes n)$ for $1leq n leq 6$." @default.
- W2070087268 created "2016-06-24" @default.
- W2070087268 creator A5003747454 @default.
- W2070087268 creator A5017773142 @default.
- W2070087268 creator A5043196876 @default.
- W2070087268 creator A5075865732 @default.
- W2070087268 date "2010-06-04" @default.
- W2070087268 modified "2023-10-16" @default.
- W2070087268 title "Critical frontier of the Potts and percolation models on triangular-type and kagome-type lattices. II. Numerical analysis" @default.
- W2070087268 cites W1531221026 @default.
- W2070087268 cites W1590167836 @default.
- W2070087268 cites W1965511886 @default.
- W2070087268 cites W1967003985 @default.
- W2070087268 cites W1970811763 @default.
- W2070087268 cites W1972850107 @default.
- W2070087268 cites W1975084455 @default.
- W2070087268 cites W1994280212 @default.
- W2070087268 cites W1996399134 @default.
- W2070087268 cites W2001731475 @default.
- W2070087268 cites W2015499335 @default.
- W2070087268 cites W2025106805 @default.
- W2070087268 cites W2025866201 @default.
- W2070087268 cites W2028546484 @default.
- W2070087268 cites W2034777315 @default.
- W2070087268 cites W2034923795 @default.
- W2070087268 cites W2037769340 @default.
- W2070087268 cites W2040109070 @default.
- W2070087268 cites W2041948597 @default.
- W2070087268 cites W2046732878 @default.
- W2070087268 cites W2050780933 @default.
- W2070087268 cites W2073352240 @default.
- W2070087268 cites W2073765477 @default.
- W2070087268 cites W2074784178 @default.
- W2070087268 cites W2075813134 @default.
- W2070087268 cites W2076006092 @default.
- W2070087268 cites W2085478989 @default.
- W2070087268 cites W2107341469 @default.
- W2070087268 cites W2111097978 @default.
- W2070087268 cites W2130738042 @default.
- W2070087268 cites W2144140570 @default.
- W2070087268 cites W2147740446 @default.
- W2070087268 cites W2155365991 @default.
- W2070087268 cites W2159793005 @default.
- W2070087268 cites W3098880727 @default.
- W2070087268 cites W1976859337 @default.
- W2070087268 doi "https://doi.org/10.1103/physreve.81.061111" @default.
- W2070087268 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20866382" @default.
- W2070087268 hasPublicationYear "2010" @default.
- W2070087268 type Work @default.
- W2070087268 sameAs 2070087268 @default.
- W2070087268 citedByCount "24" @default.
- W2070087268 countsByYear W20700872682012 @default.
- W2070087268 countsByYear W20700872682013 @default.
- W2070087268 countsByYear W20700872682014 @default.
- W2070087268 countsByYear W20700872682015 @default.
- W2070087268 countsByYear W20700872682016 @default.
- W2070087268 countsByYear W20700872682017 @default.
- W2070087268 countsByYear W20700872682022 @default.
- W2070087268 crossrefType "journal-article" @default.
- W2070087268 hasAuthorship W2070087268A5003747454 @default.
- W2070087268 hasAuthorship W2070087268A5017773142 @default.
- W2070087268 hasAuthorship W2070087268A5043196876 @default.
- W2070087268 hasAuthorship W2070087268A5075865732 @default.
- W2070087268 hasBestOaLocation W20700872682 @default.
- W2070087268 hasConcept C105795698 @default.
- W2070087268 hasConcept C107277493 @default.
- W2070087268 hasConcept C114614502 @default.
- W2070087268 hasConcept C121332964 @default.
- W2070087268 hasConcept C121864883 @default.
- W2070087268 hasConcept C142259097 @default.
- W2070087268 hasConcept C155355069 @default.
- W2070087268 hasConcept C158574103 @default.
- W2070087268 hasConcept C164154869 @default.
- W2070087268 hasConcept C177634923 @default.
- W2070087268 hasConcept C18903297 @default.
- W2070087268 hasConcept C24890656 @default.
- W2070087268 hasConcept C2524010 @default.
- W2070087268 hasConcept C26873012 @default.
- W2070087268 hasConcept C2777299769 @default.
- W2070087268 hasConcept C2781204021 @default.
- W2070087268 hasConcept C33923547 @default.
- W2070087268 hasConcept C51329190 @default.
- W2070087268 hasConcept C86803240 @default.
- W2070087268 hasConcept C90626534 @default.
- W2070087268 hasConcept C98925819 @default.
- W2070087268 hasConcept C99844830 @default.
- W2070087268 hasConceptScore W2070087268C105795698 @default.
- W2070087268 hasConceptScore W2070087268C107277493 @default.
- W2070087268 hasConceptScore W2070087268C114614502 @default.
- W2070087268 hasConceptScore W2070087268C121332964 @default.
- W2070087268 hasConceptScore W2070087268C121864883 @default.
- W2070087268 hasConceptScore W2070087268C142259097 @default.
- W2070087268 hasConceptScore W2070087268C155355069 @default.
- W2070087268 hasConceptScore W2070087268C158574103 @default.
- W2070087268 hasConceptScore W2070087268C164154869 @default.
- W2070087268 hasConceptScore W2070087268C177634923 @default.
- W2070087268 hasConceptScore W2070087268C18903297 @default.
- W2070087268 hasConceptScore W2070087268C24890656 @default.
- W2070087268 hasConceptScore W2070087268C2524010 @default.
- W2070087268 hasConceptScore W2070087268C26873012 @default.