Matches in SemOpenAlex for { <https://semopenalex.org/work/W2070143609> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2070143609 endingPage "116" @default.
- W2070143609 startingPage "105" @default.
- W2070143609 abstract "We propose a kernel method for using combinations of features across example pairs in learning pairwise classifiers. Pairwise classifiers, which identify whether two examples belong to the same class or not, are important components in duplicate detection, entity matching, and other clustering applications. Existing methods for learning pairwise classifiers from labeled training data are based on string edit distance or common features between two examples. However, if two examples from the same class have few common features, these methods have difficulties in finding these pairs and achieving high recall. One typical example is to check whether two abbreviated author names in different citations refer to the same person or not. Since similarities between examples from the same class become close to zero, classifiers fail to distinguish positive pairs from negative pairs. One approach to avoiding the problem of zero similarities is using conjunctions of different features across examples, but implementing this idea straightforwardly makes the computational cost prohibitive for practical problems. Using a kernel on pair instances, our method can use feature conjunctions across examples without actually doing feature mappings, which are computationally expensive. The kernel is a tensor product of two inner products on the original feature space. The corresponding feature mapping generates conjunctions of features only across the two different examples while that of the conventional polynomial kernel also generates conjunctions of features from the same example, which are irrelevant to pairwise classification and cause deterioration of accuracy. Our experiments on the author matching problem show that this method can give a precision 4 to 8 times higher than that of previous methods at medium recall levels." @default.
- W2070143609 created "2016-06-24" @default.
- W2070143609 creator A5046006076 @default.
- W2070143609 creator A5056709028 @default.
- W2070143609 date "2005-01-01" @default.
- W2070143609 modified "2023-10-04" @default.
- W2070143609 title "Using Feature Conjunctions across Examples for Learning Pairwise Classifiers" @default.
- W2070143609 cites W1510073064 @default.
- W2070143609 cites W1560724230 @default.
- W2070143609 cites W2067566391 @default.
- W2070143609 cites W2068580143 @default.
- W2070143609 cites W2095644746 @default.
- W2070143609 cites W2099006875 @default.
- W2070143609 cites W2111625757 @default.
- W2070143609 cites W2127674618 @default.
- W2070143609 cites W2135223301 @default.
- W2070143609 cites W2164456230 @default.
- W2070143609 cites W2168420538 @default.
- W2070143609 doi "https://doi.org/10.1527/tjsai.20.105" @default.
- W2070143609 hasPublicationYear "2005" @default.
- W2070143609 type Work @default.
- W2070143609 sameAs 2070143609 @default.
- W2070143609 citedByCount "2" @default.
- W2070143609 countsByYear W20701436092016 @default.
- W2070143609 countsByYear W20701436092022 @default.
- W2070143609 crossrefType "journal-article" @default.
- W2070143609 hasAuthorship W2070143609A5046006076 @default.
- W2070143609 hasAuthorship W2070143609A5056709028 @default.
- W2070143609 hasBestOaLocation W20701436091 @default.
- W2070143609 hasConcept C105795698 @default.
- W2070143609 hasConcept C114614502 @default.
- W2070143609 hasConcept C119857082 @default.
- W2070143609 hasConcept C122280245 @default.
- W2070143609 hasConcept C12267149 @default.
- W2070143609 hasConcept C138885662 @default.
- W2070143609 hasConcept C153180895 @default.
- W2070143609 hasConcept C154945302 @default.
- W2070143609 hasConcept C160446489 @default.
- W2070143609 hasConcept C165064840 @default.
- W2070143609 hasConcept C184898388 @default.
- W2070143609 hasConcept C2776401178 @default.
- W2070143609 hasConcept C2777212361 @default.
- W2070143609 hasConcept C33923547 @default.
- W2070143609 hasConcept C41008148 @default.
- W2070143609 hasConcept C41895202 @default.
- W2070143609 hasConcept C55851704 @default.
- W2070143609 hasConcept C73555534 @default.
- W2070143609 hasConcept C74193536 @default.
- W2070143609 hasConcept C83665646 @default.
- W2070143609 hasConceptScore W2070143609C105795698 @default.
- W2070143609 hasConceptScore W2070143609C114614502 @default.
- W2070143609 hasConceptScore W2070143609C119857082 @default.
- W2070143609 hasConceptScore W2070143609C122280245 @default.
- W2070143609 hasConceptScore W2070143609C12267149 @default.
- W2070143609 hasConceptScore W2070143609C138885662 @default.
- W2070143609 hasConceptScore W2070143609C153180895 @default.
- W2070143609 hasConceptScore W2070143609C154945302 @default.
- W2070143609 hasConceptScore W2070143609C160446489 @default.
- W2070143609 hasConceptScore W2070143609C165064840 @default.
- W2070143609 hasConceptScore W2070143609C184898388 @default.
- W2070143609 hasConceptScore W2070143609C2776401178 @default.
- W2070143609 hasConceptScore W2070143609C2777212361 @default.
- W2070143609 hasConceptScore W2070143609C33923547 @default.
- W2070143609 hasConceptScore W2070143609C41008148 @default.
- W2070143609 hasConceptScore W2070143609C41895202 @default.
- W2070143609 hasConceptScore W2070143609C55851704 @default.
- W2070143609 hasConceptScore W2070143609C73555534 @default.
- W2070143609 hasConceptScore W2070143609C74193536 @default.
- W2070143609 hasConceptScore W2070143609C83665646 @default.
- W2070143609 hasLocation W20701436091 @default.
- W2070143609 hasOpenAccess W2070143609 @default.
- W2070143609 hasPrimaryLocation W20701436091 @default.
- W2070143609 hasRelatedWork W1489359949 @default.
- W2070143609 hasRelatedWork W1558903433 @default.
- W2070143609 hasRelatedWork W1690207939 @default.
- W2070143609 hasRelatedWork W2095132765 @default.
- W2070143609 hasRelatedWork W2097184312 @default.
- W2070143609 hasRelatedWork W2119772606 @default.
- W2070143609 hasRelatedWork W2122054752 @default.
- W2070143609 hasRelatedWork W2189183545 @default.
- W2070143609 hasRelatedWork W2348964713 @default.
- W2070143609 hasRelatedWork W2520220765 @default.
- W2070143609 hasVolume "20" @default.
- W2070143609 isParatext "false" @default.
- W2070143609 isRetracted "false" @default.
- W2070143609 magId "2070143609" @default.
- W2070143609 workType "article" @default.