Matches in SemOpenAlex for { <https://semopenalex.org/work/W2070158166> ?p ?o ?g. }
- W2070158166 endingPage "100" @default.
- W2070158166 startingPage "91" @default.
- W2070158166 abstract "Hydrothermal carbonization (HTC) of biomass may be a suitable technique to increase its carbon sequestration potential when applied to soils. However, the properties of end products of HTC (hydrochars) could be significantly influenced by feedstock source and temperature during the carbonization process. This study focused on chemical modification of wheat straw, poplar wood and olive residues through HTC at different temperatures (180 °C, 210 °C and 230 °C). Besides general properties such as pH, electrical conductivity (EC), ash content, elemental composition and yield, we evaluated bulk chemical composition (13C NMR) and contribution of specific compounds (lignin and black carbon). Moreover, the possible environmental risk of using hydrochars was assessed by determining their polycyclic aromatic hydrocarbon (PAH) and their dioxin contents. Our results showed that hydrochars were generally acidic with a pH value below 5. The highest EC (1710 μS/cm) and ash content (10.9%) were found in wheat straw derived hydrochars. Hydrochar yields and C recovery decreased with increasing temperature to about 50% and 75%, respectively for all feedstocks at 230 °C. N recovery increased with increasing temperature but N content of feedstock is more important. H/C and O/C ratios showed a linear decrease with increasing production temperature for all feedstocks. O–alkyl C decreased while alkyl C and aromatic C increased with increasing temperature and no significant feedstock dependence could be observed. Carboxyl C was not influenced by feedstock and temperature. Lignin content decreased with increasing temperature, while its oxidation degree and the content of black carbon and PAH contents increased. We conclude that transformation of biomass was most advanced at 230 °C only. Feedstock did not significantly influence the chemical composition of the hydrochars apart from N content and recovery. Instead, HTC temperature is the main driver determining the chemical composition of hydrochars. Environmental risk of investigated hydrochars is low with respect to PAH and dioxin contents. Despite the advanced biomass transformation during the HTC process at 230 °C, chemical properties indicated that the end product might have a less stable structure than pyrochar. Considering the higher hydrochar yields and C and N recoveries, its C and N sequestration potential in soil could have some advantages over hydrochars but this still remains to be evaluated." @default.
- W2070158166 created "2016-06-24" @default.
- W2070158166 creator A5010389177 @default.
- W2070158166 creator A5011618614 @default.
- W2070158166 creator A5021807911 @default.
- W2070158166 creator A5027366737 @default.
- W2070158166 creator A5078099211 @default.
- W2070158166 creator A5086991469 @default.
- W2070158166 date "2013-01-01" @default.
- W2070158166 modified "2023-10-16" @default.
- W2070158166 title "Chemical modification of biomass residues during hydrothermal carbonization – What makes the difference, temperature or feedstock?" @default.
- W2070158166 cites W1965270267 @default.
- W2070158166 cites W1968674139 @default.
- W2070158166 cites W1970076264 @default.
- W2070158166 cites W1973907865 @default.
- W2070158166 cites W1987373510 @default.
- W2070158166 cites W2006314806 @default.
- W2070158166 cites W2009537824 @default.
- W2070158166 cites W2009664952 @default.
- W2070158166 cites W2018829800 @default.
- W2070158166 cites W2024778943 @default.
- W2070158166 cites W2024903534 @default.
- W2070158166 cites W2027089557 @default.
- W2070158166 cites W2046614111 @default.
- W2070158166 cites W2049137056 @default.
- W2070158166 cites W2056926674 @default.
- W2070158166 cites W2070685662 @default.
- W2070158166 cites W2075673711 @default.
- W2070158166 cites W2088145197 @default.
- W2070158166 cites W2090140753 @default.
- W2070158166 cites W2090155269 @default.
- W2070158166 cites W2091489700 @default.
- W2070158166 cites W2093679841 @default.
- W2070158166 cites W2096062925 @default.
- W2070158166 cites W2107092272 @default.
- W2070158166 cites W2126768074 @default.
- W2070158166 cites W2153500382 @default.
- W2070158166 cites W2156498978 @default.
- W2070158166 cites W2167926082 @default.
- W2070158166 cites W2169545774 @default.
- W2070158166 cites W2315370588 @default.
- W2070158166 cites W2316551964 @default.
- W2070158166 doi "https://doi.org/10.1016/j.orggeochem.2012.10.006" @default.
- W2070158166 hasPublicationYear "2013" @default.
- W2070158166 type Work @default.
- W2070158166 sameAs 2070158166 @default.
- W2070158166 citedByCount "155" @default.
- W2070158166 countsByYear W20701581662013 @default.
- W2070158166 countsByYear W20701581662014 @default.
- W2070158166 countsByYear W20701581662015 @default.
- W2070158166 countsByYear W20701581662016 @default.
- W2070158166 countsByYear W20701581662017 @default.
- W2070158166 countsByYear W20701581662018 @default.
- W2070158166 countsByYear W20701581662019 @default.
- W2070158166 countsByYear W20701581662020 @default.
- W2070158166 countsByYear W20701581662021 @default.
- W2070158166 countsByYear W20701581662022 @default.
- W2070158166 countsByYear W20701581662023 @default.
- W2070158166 crossrefType "journal-article" @default.
- W2070158166 hasAuthorship W2070158166A5010389177 @default.
- W2070158166 hasAuthorship W2070158166A5011618614 @default.
- W2070158166 hasAuthorship W2070158166A5021807911 @default.
- W2070158166 hasAuthorship W2070158166A5027366737 @default.
- W2070158166 hasAuthorship W2070158166A5078099211 @default.
- W2070158166 hasAuthorship W2070158166A5086991469 @default.
- W2070158166 hasConcept C104779481 @default.
- W2070158166 hasConcept C105923489 @default.
- W2070158166 hasConcept C107872376 @default.
- W2070158166 hasConcept C115540264 @default.
- W2070158166 hasConcept C127413603 @default.
- W2070158166 hasConcept C140205800 @default.
- W2070158166 hasConcept C149849071 @default.
- W2070158166 hasConcept C150394285 @default.
- W2070158166 hasConcept C154877778 @default.
- W2070158166 hasConcept C156383657 @default.
- W2070158166 hasConcept C159985019 @default.
- W2070158166 hasConcept C178790620 @default.
- W2070158166 hasConcept C179104552 @default.
- W2070158166 hasConcept C185592680 @default.
- W2070158166 hasConcept C192562407 @default.
- W2070158166 hasConcept C206139338 @default.
- W2070158166 hasConcept C2777207669 @default.
- W2070158166 hasConcept C2779587293 @default.
- W2070158166 hasConcept C2779611803 @default.
- W2070158166 hasConcept C2781052789 @default.
- W2070158166 hasConcept C528095902 @default.
- W2070158166 hasConcept C6557445 @default.
- W2070158166 hasConcept C86803240 @default.
- W2070158166 hasConceptScore W2070158166C104779481 @default.
- W2070158166 hasConceptScore W2070158166C105923489 @default.
- W2070158166 hasConceptScore W2070158166C107872376 @default.
- W2070158166 hasConceptScore W2070158166C115540264 @default.
- W2070158166 hasConceptScore W2070158166C127413603 @default.
- W2070158166 hasConceptScore W2070158166C140205800 @default.
- W2070158166 hasConceptScore W2070158166C149849071 @default.
- W2070158166 hasConceptScore W2070158166C150394285 @default.
- W2070158166 hasConceptScore W2070158166C154877778 @default.
- W2070158166 hasConceptScore W2070158166C156383657 @default.