Matches in SemOpenAlex for { <https://semopenalex.org/work/W2070167865> ?p ?o ?g. }
- W2070167865 endingPage "534" @default.
- W2070167865 startingPage "521" @default.
- W2070167865 abstract "Newly applied concepts in technology and physics have popularized modern lasers both within industry and in the field of medicine. High-energy laser light can now safely be used for a variety of tasks, from metal welding to cosmetic surgery. Today's lasers are safe and versatile because they have been designed based on unique principles that have evolved from photobiology and tissue dynamics. It is the knowledge of these principles that has allowed physician–scientists to manipulate the type of laser energy produced and the manner in which it is delivered, in order to destroy specific tissues while sparing damage to surrounding vital structures. The first medical lasers to be developed were continuous wave lasers that produced a continuous beam of radiation that was subsequently absorbed by a target. Although this constant laser light could effectively treat certain dermatologic conditions, its use was limited by the fact that the laser energy not only altered the target but also “spilled over” into adjacent tissues, causing unwanted collateral damage and scarring. As our understanding of the interplay between living tissue and laser physics evolved, however, so did our ability to restrict laser damage to a specific target. The concept of selective photothermolysis developed by Anderson and Parrish in 1983 gave us the tools necessary to be more precise and safer with laser energy.12 Selective photothermolysis states that a specific chromophore or target can be selectively destroyed with minimal collateral thermal tissue damage if the laser wavelength matches that absorbed by the chromophore, and if the target is exposed to the laser energy for an interval less than its thermal relaxation time. The thermal relaxation time is the time it takes a given target chromophore to lose 50% of its absorbed heat energy. Selective photothermolysis revolutionized laser technology and paved the way for a new generation of lasers that are designed to deliver a set wavelength for a precise duration, resulting in greater specificity and safety. The pulsed, quality Q-switched, and scanned systems are examples of such laser technology. Other so-called quasi-continuous laser systems also attempt to adhere to the theory of selective photothermolysis by limiting pulse durations from a continuous beam source through shuttering or chopping of the emitted laser beam. The usefulness of these systems is often limited owing to their high repetition rates or moderately long pulse durations, causing the target to experience the laser's energy as if it were a continuous wave. With the previously mentioned concepts in mind, the side-effect profile of a specific laser can be predicted in general terms, based on its wavelength and mode of operation. As a group, continuous wave and quasi-continuous lasers have a higher risk of scarring and textural changes through thermal buildup and heat diffusion to normal skin structures (Table 1). Lasers designed on the theory of selective photothermolysis are more specific and have a lower risk profile. Depending on the wavelength and pulse durations delivered, pigmentary changes, epidermal cell injury, textural changes, and crusting and tissue splatter can potentially occur (Tables 1 and 2). It is important to remember that even the safest lasers can cause injury if used incorrectly. Repetitive or overlapping pulses, excessive energy or power settings, and improper patient selection can potentially result in a high rate of morbidity with the use of any medical laser. This article provides an overview of the complications encountered with currently available laser systems." @default.
- W2070167865 created "2016-06-24" @default.
- W2070167865 creator A5053734142 @default.
- W2070167865 date "1997-07-01" @default.
- W2070167865 modified "2023-10-16" @default.
- W2070167865 title "COMPLICATIONS OF LASER SURGERY" @default.
- W2070167865 cites W1487796032 @default.
- W2070167865 cites W1526368547 @default.
- W2070167865 cites W1760909448 @default.
- W2070167865 cites W1970765090 @default.
- W2070167865 cites W1973392375 @default.
- W2070167865 cites W1973401965 @default.
- W2070167865 cites W1975136630 @default.
- W2070167865 cites W1975742162 @default.
- W2070167865 cites W1978906690 @default.
- W2070167865 cites W1986728498 @default.
- W2070167865 cites W1987730704 @default.
- W2070167865 cites W1989890054 @default.
- W2070167865 cites W1992695395 @default.
- W2070167865 cites W1993647839 @default.
- W2070167865 cites W1997636352 @default.
- W2070167865 cites W1998124595 @default.
- W2070167865 cites W2004511907 @default.
- W2070167865 cites W2009319541 @default.
- W2070167865 cites W2014636484 @default.
- W2070167865 cites W2019533220 @default.
- W2070167865 cites W2023222374 @default.
- W2070167865 cites W2024938392 @default.
- W2070167865 cites W2028270636 @default.
- W2070167865 cites W2036329945 @default.
- W2070167865 cites W2038683951 @default.
- W2070167865 cites W2042257991 @default.
- W2070167865 cites W2044752008 @default.
- W2070167865 cites W2046563205 @default.
- W2070167865 cites W2049311115 @default.
- W2070167865 cites W2049815410 @default.
- W2070167865 cites W2050902255 @default.
- W2070167865 cites W2055753791 @default.
- W2070167865 cites W2059404212 @default.
- W2070167865 cites W2061645708 @default.
- W2070167865 cites W2062873819 @default.
- W2070167865 cites W2064754149 @default.
- W2070167865 cites W2065408531 @default.
- W2070167865 cites W2066392685 @default.
- W2070167865 cites W2074990035 @default.
- W2070167865 cites W2078945420 @default.
- W2070167865 cites W2083563914 @default.
- W2070167865 cites W2088203329 @default.
- W2070167865 cites W2090713833 @default.
- W2070167865 cites W2091335998 @default.
- W2070167865 cites W2095145309 @default.
- W2070167865 cites W2098124408 @default.
- W2070167865 cites W2107174916 @default.
- W2070167865 cites W2115508385 @default.
- W2070167865 cites W2117815989 @default.
- W2070167865 cites W2123191514 @default.
- W2070167865 cites W2126293684 @default.
- W2070167865 cites W2130696489 @default.
- W2070167865 cites W2140196841 @default.
- W2070167865 cites W2158831156 @default.
- W2070167865 cites W2312672359 @default.
- W2070167865 cites W2417608255 @default.
- W2070167865 cites W35880816 @default.
- W2070167865 cites W4238086149 @default.
- W2070167865 cites W4238247458 @default.
- W2070167865 cites W4243263336 @default.
- W2070167865 cites W4244584384 @default.
- W2070167865 cites W4245653618 @default.
- W2070167865 cites W4248597185 @default.
- W2070167865 cites W4249643920 @default.
- W2070167865 cites W4250999088 @default.
- W2070167865 cites W4254026207 @default.
- W2070167865 cites W4255333189 @default.
- W2070167865 cites W4323237765 @default.
- W2070167865 doi "https://doi.org/10.1016/s0733-8635(05)70459-9" @default.
- W2070167865 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9189687" @default.
- W2070167865 hasPublicationYear "1997" @default.
- W2070167865 type Work @default.
- W2070167865 sameAs 2070167865 @default.
- W2070167865 citedByCount "34" @default.
- W2070167865 countsByYear W20701678652012 @default.
- W2070167865 countsByYear W20701678652013 @default.
- W2070167865 countsByYear W20701678652014 @default.
- W2070167865 countsByYear W20701678652015 @default.
- W2070167865 countsByYear W20701678652021 @default.
- W2070167865 crossrefType "journal-article" @default.
- W2070167865 hasAuthorship W2070167865A5053734142 @default.
- W2070167865 hasConcept C120665830 @default.
- W2070167865 hasConcept C121332964 @default.
- W2070167865 hasConcept C136229726 @default.
- W2070167865 hasConcept C141071460 @default.
- W2070167865 hasConcept C144024400 @default.
- W2070167865 hasConcept C2776829320 @default.
- W2070167865 hasConcept C2779528045 @default.
- W2070167865 hasConcept C2993632694 @default.
- W2070167865 hasConcept C520434653 @default.
- W2070167865 hasConcept C71924100 @default.
- W2070167865 hasConcept C73484699 @default.