Matches in SemOpenAlex for { <https://semopenalex.org/work/W2070213512> ?p ?o ?g. }
- W2070213512 endingPage "2212" @default.
- W2070213512 startingPage "2199" @default.
- W2070213512 abstract "Several recent studies have used matrix factorization algorithms to assess the hypothesis that behaviors might be produced through the combination of a small number of muscle synergies. Although generally agreeing in their basic conclusions, these studies have used a range of different algorithms, making their interpretation and integration difficult. We therefore compared the performance of these different algorithms on both simulated and experimental data sets. We focused on the ability of these algorithms to identify the set of synergies underlying a data set. All data sets consisted of nonnegative values, reflecting the nonnegative data of muscle activation patterns. We found that the performance of principal component analysis (PCA) was generally lower than that of the other algorithms in identifying muscle synergies. Factor analysis (FA) with varimax rotation was better than PCA, and was generally at the same levels as independent component analysis (ICA) and nonnegative matrix factorization (NMF). ICA performed very well on data sets corrupted by constant variance Gaussian noise, but was impaired on data sets with signal-dependent noise and when synergy activation coefficients were correlated. Nonnegative matrix factorization (NMF) performed similarly to ICA and FA on data sets with signal-dependent noise and was generally robust across data sets. The best algorithms were ICA applied to the subspace defined by PCA (ICAPCA) and a version of probabilistic ICA with nonnegativity constraints (pICA). We also evaluated some commonly used criteria to identify the number of synergies underlying a data set, finding that only likelihood ratios based on factor analysis identified the correct number of synergies for data sets with signal-dependent noise in some cases. We then proposed an ad hoc procedure, finding that it was able to identify the correct number in a larger number of cases. Finally, we applied these methods to an experimentally obtained data set. The best performing algorithms (FA, ICA, NMF, ICAPCA, pICA) identified synergies very similar to one another. Based on these results, we discuss guidelines for using factorization algorithms to analyze muscle activation patterns. More generally, the ability of several algorithms to identify the correct muscle synergies and activation coefficients in simulated data, combined with their consistency when applied to physiological data sets, suggests that the muscle synergies found by a particular algorithm are not an artifact of that algorithm, but reflect basic aspects of the organization of muscle activation patterns underlying behaviors." @default.
- W2070213512 created "2016-06-24" @default.
- W2070213512 creator A5001221340 @default.
- W2070213512 creator A5058898734 @default.
- W2070213512 creator A5087545065 @default.
- W2070213512 date "2006-04-01" @default.
- W2070213512 modified "2023-10-10" @default.
- W2070213512 title "Matrix Factorization Algorithms for the Identification of Muscle Synergies: Evaluation on Simulated and Experimental Data Sets" @default.
- W2070213512 cites W13740476 @default.
- W2070213512 cites W1482575233 @default.
- W2070213512 cites W1902027874 @default.
- W2070213512 cites W1963185526 @default.
- W2070213512 cites W1971674194 @default.
- W2070213512 cites W1972837991 @default.
- W2070213512 cites W1996884089 @default.
- W2070213512 cites W2004786860 @default.
- W2070213512 cites W2018116795 @default.
- W2070213512 cites W2026466572 @default.
- W2070213512 cites W2058670155 @default.
- W2070213512 cites W2064693602 @default.
- W2070213512 cites W2066624630 @default.
- W2070213512 cites W2071382673 @default.
- W2070213512 cites W2072016696 @default.
- W2070213512 cites W2078642193 @default.
- W2070213512 cites W2085803587 @default.
- W2070213512 cites W2088427981 @default.
- W2070213512 cites W2096900406 @default.
- W2070213512 cites W2103139809 @default.
- W2070213512 cites W2103212315 @default.
- W2070213512 cites W2106250683 @default.
- W2070213512 cites W2106518363 @default.
- W2070213512 cites W2108315391 @default.
- W2070213512 cites W2108384452 @default.
- W2070213512 cites W2115562224 @default.
- W2070213512 cites W2115643478 @default.
- W2070213512 cites W2123649031 @default.
- W2070213512 cites W2133355507 @default.
- W2070213512 cites W2137234026 @default.
- W2070213512 cites W2137969290 @default.
- W2070213512 cites W2143742113 @default.
- W2070213512 cites W2144207952 @default.
- W2070213512 cites W2145889472 @default.
- W2070213512 cites W2151947600 @default.
- W2070213512 cites W2217719860 @default.
- W2070213512 cites W2318408586 @default.
- W2070213512 cites W2334207126 @default.
- W2070213512 cites W2396332812 @default.
- W2070213512 cites W4237377395 @default.
- W2070213512 doi "https://doi.org/10.1152/jn.00222.2005" @default.
- W2070213512 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16394079" @default.
- W2070213512 hasPublicationYear "2006" @default.
- W2070213512 type Work @default.
- W2070213512 sameAs 2070213512 @default.
- W2070213512 citedByCount "608" @default.
- W2070213512 countsByYear W20702135122012 @default.
- W2070213512 countsByYear W20702135122013 @default.
- W2070213512 countsByYear W20702135122014 @default.
- W2070213512 countsByYear W20702135122015 @default.
- W2070213512 countsByYear W20702135122016 @default.
- W2070213512 countsByYear W20702135122017 @default.
- W2070213512 countsByYear W20702135122018 @default.
- W2070213512 countsByYear W20702135122019 @default.
- W2070213512 countsByYear W20702135122020 @default.
- W2070213512 countsByYear W20702135122021 @default.
- W2070213512 countsByYear W20702135122022 @default.
- W2070213512 countsByYear W20702135122023 @default.
- W2070213512 crossrefType "journal-article" @default.
- W2070213512 hasAuthorship W2070213512A5001221340 @default.
- W2070213512 hasAuthorship W2070213512A5058898734 @default.
- W2070213512 hasAuthorship W2070213512A5087545065 @default.
- W2070213512 hasBestOaLocation W20702135122 @default.
- W2070213512 hasConcept C105795698 @default.
- W2070213512 hasConcept C106906290 @default.
- W2070213512 hasConcept C11413529 @default.
- W2070213512 hasConcept C115961682 @default.
- W2070213512 hasConcept C120317606 @default.
- W2070213512 hasConcept C121332964 @default.
- W2070213512 hasConcept C127162648 @default.
- W2070213512 hasConcept C152671427 @default.
- W2070213512 hasConcept C153180895 @default.
- W2070213512 hasConcept C154945302 @default.
- W2070213512 hasConcept C158693339 @default.
- W2070213512 hasConcept C177264268 @default.
- W2070213512 hasConcept C179861144 @default.
- W2070213512 hasConcept C199360897 @default.
- W2070213512 hasConcept C27438332 @default.
- W2070213512 hasConcept C31258907 @default.
- W2070213512 hasConcept C33923547 @default.
- W2070213512 hasConcept C39896193 @default.
- W2070213512 hasConcept C41008148 @default.
- W2070213512 hasConcept C42355184 @default.
- W2070213512 hasConcept C51432778 @default.
- W2070213512 hasConcept C58489278 @default.
- W2070213512 hasConcept C62520636 @default.
- W2070213512 hasConcept C99498987 @default.
- W2070213512 hasConceptScore W2070213512C105795698 @default.
- W2070213512 hasConceptScore W2070213512C106906290 @default.
- W2070213512 hasConceptScore W2070213512C11413529 @default.