Matches in SemOpenAlex for { <https://semopenalex.org/work/W2070262806> ?p ?o ?g. }
- W2070262806 endingPage "248" @default.
- W2070262806 startingPage "230" @default.
- W2070262806 abstract "Hyperspectral images (HSIs) have a high spectral resolution and ground-object recognition ability, but inevitably suffer from various factors in the imaging procedure, such as atmospheric effects, secondary illumination, and the physical limitations, which have a direct bearing on the visual quality of the images and the accuracy of the subsequent processing. HSI restoration is therefore a crucial task for improving the precision of the subsequent products. Currently, patch-based schemes have offered promising results for the preservation of detailed information and the removal of additive noise. In HSIs, the information in the spectral dimension is more redundant than the information in the spatial dimension. We therefore propose a multidimensional hyperspectral nonlocal model, in which both the correlation of the spectral bands and the similarity of the spatial structure are considered. In the model, a multidimensional nonlocal total variation constraint is applied to preserve edge sharpness. Experiments with both synthetic and real hyperspectral data illustrate that the proposed method can obtain promising results in HSI restoration." @default.
- W2070262806 created "2016-06-24" @default.
- W2070262806 creator A5008587738 @default.
- W2070262806 creator A5047576305 @default.
- W2070262806 creator A5064776886 @default.
- W2070262806 creator A5066135984 @default.
- W2070262806 date "2015-06-01" @default.
- W2070262806 modified "2023-09-27" @default.
- W2070262806 title "Hyperspectral image recovery employing a multidimensional nonlocal total variation model" @default.
- W2070262806 cites W1494195692 @default.
- W2070262806 cites W1968660339 @default.
- W2070262806 cites W1969760160 @default.
- W2070262806 cites W1970342212 @default.
- W2070262806 cites W1985242206 @default.
- W2070262806 cites W1986748999 @default.
- W2070262806 cites W1995889410 @default.
- W2070262806 cites W1998680950 @default.
- W2070262806 cites W1999905919 @default.
- W2070262806 cites W2002177959 @default.
- W2070262806 cites W2003569215 @default.
- W2070262806 cites W2012807998 @default.
- W2070262806 cites W2023926794 @default.
- W2070262806 cites W2033587325 @default.
- W2070262806 cites W2039596145 @default.
- W2070262806 cites W2055225600 @default.
- W2070262806 cites W2060945009 @default.
- W2070262806 cites W2070424424 @default.
- W2070262806 cites W2083525611 @default.
- W2070262806 cites W2085088008 @default.
- W2070262806 cites W2088949640 @default.
- W2070262806 cites W2091494211 @default.
- W2070262806 cites W2113945798 @default.
- W2070262806 cites W2117092649 @default.
- W2070262806 cites W2117146861 @default.
- W2070262806 cites W2120001410 @default.
- W2070262806 cites W2120348721 @default.
- W2070262806 cites W2122752532 @default.
- W2070262806 cites W2129891925 @default.
- W2070262806 cites W2133665775 @default.
- W2070262806 cites W2134929491 @default.
- W2070262806 cites W2136396015 @default.
- W2070262806 cites W2137290314 @default.
- W2070262806 cites W2140702875 @default.
- W2070262806 cites W2155633677 @default.
- W2070262806 cites W2158940042 @default.
- W2070262806 cites W2159736423 @default.
- W2070262806 cites W2160484748 @default.
- W2070262806 cites W2161073299 @default.
- W2070262806 cites W2162276208 @default.
- W2070262806 cites W2171520281 @default.
- W2070262806 doi "https://doi.org/10.1016/j.sigpro.2014.12.023" @default.
- W2070262806 hasPublicationYear "2015" @default.
- W2070262806 type Work @default.
- W2070262806 sameAs 2070262806 @default.
- W2070262806 citedByCount "40" @default.
- W2070262806 countsByYear W20702628062015 @default.
- W2070262806 countsByYear W20702628062016 @default.
- W2070262806 countsByYear W20702628062017 @default.
- W2070262806 countsByYear W20702628062018 @default.
- W2070262806 countsByYear W20702628062019 @default.
- W2070262806 countsByYear W20702628062020 @default.
- W2070262806 countsByYear W20702628062021 @default.
- W2070262806 countsByYear W20702628062022 @default.
- W2070262806 countsByYear W20702628062023 @default.
- W2070262806 crossrefType "journal-article" @default.
- W2070262806 hasAuthorship W2070262806A5008587738 @default.
- W2070262806 hasAuthorship W2070262806A5047576305 @default.
- W2070262806 hasAuthorship W2070262806A5064776886 @default.
- W2070262806 hasAuthorship W2070262806A5066135984 @default.
- W2070262806 hasConcept C103278499 @default.
- W2070262806 hasConcept C115961682 @default.
- W2070262806 hasConcept C153180895 @default.
- W2070262806 hasConcept C154945302 @default.
- W2070262806 hasConcept C159078339 @default.
- W2070262806 hasConcept C202444582 @default.
- W2070262806 hasConcept C205649164 @default.
- W2070262806 hasConcept C2524010 @default.
- W2070262806 hasConcept C2776036281 @default.
- W2070262806 hasConcept C31972630 @default.
- W2070262806 hasConcept C33676613 @default.
- W2070262806 hasConcept C33923547 @default.
- W2070262806 hasConcept C41008148 @default.
- W2070262806 hasConcept C62649853 @default.
- W2070262806 hasConcept C99498987 @default.
- W2070262806 hasConceptScore W2070262806C103278499 @default.
- W2070262806 hasConceptScore W2070262806C115961682 @default.
- W2070262806 hasConceptScore W2070262806C153180895 @default.
- W2070262806 hasConceptScore W2070262806C154945302 @default.
- W2070262806 hasConceptScore W2070262806C159078339 @default.
- W2070262806 hasConceptScore W2070262806C202444582 @default.
- W2070262806 hasConceptScore W2070262806C205649164 @default.
- W2070262806 hasConceptScore W2070262806C2524010 @default.
- W2070262806 hasConceptScore W2070262806C2776036281 @default.
- W2070262806 hasConceptScore W2070262806C31972630 @default.
- W2070262806 hasConceptScore W2070262806C33676613 @default.
- W2070262806 hasConceptScore W2070262806C33923547 @default.
- W2070262806 hasConceptScore W2070262806C41008148 @default.
- W2070262806 hasConceptScore W2070262806C62649853 @default.