Matches in SemOpenAlex for { <https://semopenalex.org/work/W2070515122> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2070515122 abstract "Abstract The ensemble Kalman filter (EnKF) has been successfully implemented to assimilate data in reservoir history matching problems. In the EnKF method, a suite of reservoir models (set of ensemble members) runs independently forward in time (forecast step), and is continuously updated as new data becomes available (analysis step). In this paper, an efficient implementation of the EnKF is presented in which three-level parallelization is employed. The first level of parallelization is during the forecast step, where each ensemble member runs on a separate processor. This is very efficient for a large number of ensemble members, but without additional parallelization, the memory of a single processor constrains the size of the reservoir simulation. Therefore, a second level of parallelization which uses a parallel reservoir simulator for each realization is implemented. The analysis step requires collecting a state vector from each ensemble member. If this data is collected on a single processor, this poses an additional limitation on the size of the EnKF problem in terms of both memory and computation time. Therefore, we propose an algorithm in which a third level of parallelization is achieved for the analysis step. The main computational gain of parallelization of the analysis step comes from the fact that the matrix-vector multiplications can be parallelized efficiently. The parallel EnKF algorithm is applied to a set of reservoir history matching problems. The effect of ensemble sizes on the history matching results is investigated. We present computational results that show the efficiency is greatly enhanced by moving from a serial to a parallel implementation of the EnKF. The initial testing of parallel EnKF has been done on the massively parallel machines Ranger and Lonestar, at the Texas Advanced Computing Center (TACC), and the cluster Bevo2, at the Institute for Computational Engineering and Sciences (ICES) at the University of Texas at Austin." @default.
- W2070515122 created "2016-06-24" @default.
- W2070515122 creator A5003120570 @default.
- W2070515122 creator A5015200343 @default.
- W2070515122 creator A5038648721 @default.
- W2070515122 date "2011-02-21" @default.
- W2070515122 modified "2023-09-26" @default.
- W2070515122 title "Multi-level Parallelization of Ensemble Kalman Filter for Reservoir History Matching" @default.
- W2070515122 cites W1522319528 @default.
- W2070515122 cites W1547755009 @default.
- W2070515122 cites W2012052869 @default.
- W2070515122 cites W2016203495 @default.
- W2070515122 cites W2046372107 @default.
- W2070515122 cites W2104255289 @default.
- W2070515122 cites W2105934661 @default.
- W2070515122 cites W2132681396 @default.
- W2070515122 cites W2152091261 @default.
- W2070515122 cites W2157098139 @default.
- W2070515122 cites W2173190456 @default.
- W2070515122 cites W2174043722 @default.
- W2070515122 cites W2755380546 @default.
- W2070515122 cites W2136218106 @default.
- W2070515122 doi "https://doi.org/10.2118/141657-ms" @default.
- W2070515122 hasPublicationYear "2011" @default.
- W2070515122 type Work @default.
- W2070515122 sameAs 2070515122 @default.
- W2070515122 citedByCount "9" @default.
- W2070515122 countsByYear W20705151222012 @default.
- W2070515122 countsByYear W20705151222013 @default.
- W2070515122 countsByYear W20705151222016 @default.
- W2070515122 countsByYear W20705151222017 @default.
- W2070515122 countsByYear W20705151222021 @default.
- W2070515122 crossrefType "proceedings-article" @default.
- W2070515122 hasAuthorship W2070515122A5003120570 @default.
- W2070515122 hasAuthorship W2070515122A5015200343 @default.
- W2070515122 hasAuthorship W2070515122A5038648721 @default.
- W2070515122 hasConcept C105795698 @default.
- W2070515122 hasConcept C150679823 @default.
- W2070515122 hasConcept C154945302 @default.
- W2070515122 hasConcept C157286648 @default.
- W2070515122 hasConcept C165064840 @default.
- W2070515122 hasConcept C173608175 @default.
- W2070515122 hasConcept C206833254 @default.
- W2070515122 hasConcept C33923547 @default.
- W2070515122 hasConcept C41008148 @default.
- W2070515122 hasConcept C50050547 @default.
- W2070515122 hasConcept C79334102 @default.
- W2070515122 hasConceptScore W2070515122C105795698 @default.
- W2070515122 hasConceptScore W2070515122C150679823 @default.
- W2070515122 hasConceptScore W2070515122C154945302 @default.
- W2070515122 hasConceptScore W2070515122C157286648 @default.
- W2070515122 hasConceptScore W2070515122C165064840 @default.
- W2070515122 hasConceptScore W2070515122C173608175 @default.
- W2070515122 hasConceptScore W2070515122C206833254 @default.
- W2070515122 hasConceptScore W2070515122C33923547 @default.
- W2070515122 hasConceptScore W2070515122C41008148 @default.
- W2070515122 hasConceptScore W2070515122C50050547 @default.
- W2070515122 hasConceptScore W2070515122C79334102 @default.
- W2070515122 hasLocation W20705151221 @default.
- W2070515122 hasOpenAccess W2070515122 @default.
- W2070515122 hasPrimaryLocation W20705151221 @default.
- W2070515122 hasRelatedWork W115681601 @default.
- W2070515122 hasRelatedWork W1995882915 @default.
- W2070515122 hasRelatedWork W2040655229 @default.
- W2070515122 hasRelatedWork W2055123961 @default.
- W2070515122 hasRelatedWork W2078414914 @default.
- W2070515122 hasRelatedWork W2080893563 @default.
- W2070515122 hasRelatedWork W2104255289 @default.
- W2070515122 hasRelatedWork W2114912822 @default.
- W2070515122 hasRelatedWork W2173190456 @default.
- W2070515122 hasRelatedWork W2174043722 @default.
- W2070515122 hasRelatedWork W2195954847 @default.
- W2070515122 hasRelatedWork W2378241806 @default.
- W2070515122 hasRelatedWork W2611385094 @default.
- W2070515122 hasRelatedWork W2755380546 @default.
- W2070515122 hasRelatedWork W2801692393 @default.
- W2070515122 hasRelatedWork W2920026219 @default.
- W2070515122 hasRelatedWork W3032934070 @default.
- W2070515122 hasRelatedWork W3094647156 @default.
- W2070515122 hasRelatedWork W373240961 @default.
- W2070515122 hasRelatedWork W2136218106 @default.
- W2070515122 isParatext "false" @default.
- W2070515122 isRetracted "false" @default.
- W2070515122 magId "2070515122" @default.
- W2070515122 workType "article" @default.