Matches in SemOpenAlex for { <https://semopenalex.org/work/W2070548987> ?p ?o ?g. }
- W2070548987 endingPage "30440" @default.
- W2070548987 startingPage "30434" @default.
- W2070548987 abstract "The oxidation of lipoproteins is considered to play a key role in atherogenesis, and tyrosyl radicals have been implicated in the oxidation reaction. Tyrosyl radicals are generated in a system containing myeloperoxidase, H2O2, and tyrosine, but details of this enzyme-catalyzed reaction have not been explored. We have performed transient spectral and kinetic measurements to study the oxidation of tyrosine by the myeloperoxidase intermediates, compounds I and II, using both sequential mixing and single-mixing stopped-flow techniques. The one-electron reduction of compound I to compound II by tyrosine has a second order rate constant of (7.7 ± 0.1) × 105M−1 s−1. Compound II is then reduced by tyrosine to native enzyme with a second order rate constant of (1.57 ± 0.06) × 104M−1 s−1. Our study further revealed that, compared with horseradish peroxidase, thyroid peroxidase, and lactoperoxidase, myeloperoxidase is the most efficient catalyst of tyrosine oxidation at physiological pH. The second order rate constant for the myeloperoxidase compound I reaction with tyrosine is comparable with that of its compound I reaction with chloride: (4.7 ± 0.1) × 106M−1 s−1. Thus, although chloride is considered the major myeloperoxidase substrate, tyrosine is able to compete effectively for compound I. Steady state inhibition studies demonstrate that chloride binds very weakly to the tyrosine binding site of the enzyme. Coupling of tyrosyl radicals yields dityrosine, a highly fluorescent stable compound that had been identified as a possible marker for lipoprotein oxidation. We present spectral and kinetic data showing that dityrosine is further oxidized by both myeloperoxidase compounds I and II. The second order rate constants we determined for dityrosine oxidation are (1.12 ± 0.01) × 105M−1 s−1 for compound I and (7.5 ± 0.3) × 102M−1 s−1 for compound II. Therefore, caution must be exercised when using dityrosine as a quantitative index of lipoprotein oxidation, particularly in the presence of myeloperoxidase and H2O2. The oxidation of lipoproteins is considered to play a key role in atherogenesis, and tyrosyl radicals have been implicated in the oxidation reaction. Tyrosyl radicals are generated in a system containing myeloperoxidase, H2O2, and tyrosine, but details of this enzyme-catalyzed reaction have not been explored. We have performed transient spectral and kinetic measurements to study the oxidation of tyrosine by the myeloperoxidase intermediates, compounds I and II, using both sequential mixing and single-mixing stopped-flow techniques. The one-electron reduction of compound I to compound II by tyrosine has a second order rate constant of (7.7 ± 0.1) × 105M−1 s−1. Compound II is then reduced by tyrosine to native enzyme with a second order rate constant of (1.57 ± 0.06) × 104M−1 s−1. Our study further revealed that, compared with horseradish peroxidase, thyroid peroxidase, and lactoperoxidase, myeloperoxidase is the most efficient catalyst of tyrosine oxidation at physiological pH. The second order rate constant for the myeloperoxidase compound I reaction with tyrosine is comparable with that of its compound I reaction with chloride: (4.7 ± 0.1) × 106M−1 s−1. Thus, although chloride is considered the major myeloperoxidase substrate, tyrosine is able to compete effectively for compound I. Steady state inhibition studies demonstrate that chloride binds very weakly to the tyrosine binding site of the enzyme. Coupling of tyrosyl radicals yields dityrosine, a highly fluorescent stable compound that had been identified as a possible marker for lipoprotein oxidation. We present spectral and kinetic data showing that dityrosine is further oxidized by both myeloperoxidase compounds I and II. The second order rate constants we determined for dityrosine oxidation are (1.12 ± 0.01) × 105M−1 s−1 for compound I and (7.5 ± 0.3) × 102M−1 s−1 for compound II. Therefore, caution must be exercised when using dityrosine as a quantitative index of lipoprotein oxidation, particularly in the presence of myeloperoxidase and H2O2." @default.
- W2070548987 created "2016-06-24" @default.
- W2070548987 creator A5028881112 @default.
- W2070548987 creator A5079293470 @default.
- W2070548987 date "1995-12-01" @default.
- W2070548987 modified "2023-10-14" @default.
- W2070548987 title "Kinetics of Oxidation of Tyrosine and Dityrosine by Myeloperoxidase Compounds I and II" @default.
- W2070548987 cites W1487326635 @default.
- W2070548987 cites W1490101125 @default.
- W2070548987 cites W1490543570 @default.
- W2070548987 cites W1497764520 @default.
- W2070548987 cites W1505149221 @default.
- W2070548987 cites W1523652295 @default.
- W2070548987 cites W1539688857 @default.
- W2070548987 cites W1566039965 @default.
- W2070548987 cites W1591137092 @default.
- W2070548987 cites W1606963643 @default.
- W2070548987 cites W1644991946 @default.
- W2070548987 cites W1672750600 @default.
- W2070548987 cites W1845299120 @default.
- W2070548987 cites W1901926248 @default.
- W2070548987 cites W1913877709 @default.
- W2070548987 cites W1968130661 @default.
- W2070548987 cites W1969878412 @default.
- W2070548987 cites W1972182067 @default.
- W2070548987 cites W1979281692 @default.
- W2070548987 cites W1984272679 @default.
- W2070548987 cites W1989617728 @default.
- W2070548987 cites W1994259078 @default.
- W2070548987 cites W1995110989 @default.
- W2070548987 cites W1997449896 @default.
- W2070548987 cites W1997785022 @default.
- W2070548987 cites W2005230846 @default.
- W2070548987 cites W2015264794 @default.
- W2070548987 cites W2016573311 @default.
- W2070548987 cites W2017140695 @default.
- W2070548987 cites W2018891565 @default.
- W2070548987 cites W2024310832 @default.
- W2070548987 cites W2026352584 @default.
- W2070548987 cites W2028061849 @default.
- W2070548987 cites W2028257547 @default.
- W2070548987 cites W2034917714 @default.
- W2070548987 cites W2036330691 @default.
- W2070548987 cites W2039042657 @default.
- W2070548987 cites W2039366469 @default.
- W2070548987 cites W2043447049 @default.
- W2070548987 cites W2043756056 @default.
- W2070548987 cites W2049670948 @default.
- W2070548987 cites W2055627556 @default.
- W2070548987 cites W2061755142 @default.
- W2070548987 cites W2079735654 @default.
- W2070548987 cites W2083434597 @default.
- W2070548987 cites W2092478218 @default.
- W2070548987 cites W2095070102 @default.
- W2070548987 cites W2098575603 @default.
- W2070548987 cites W2104573407 @default.
- W2070548987 cites W2109173122 @default.
- W2070548987 cites W2151840391 @default.
- W2070548987 cites W2158604239 @default.
- W2070548987 cites W2190508491 @default.
- W2070548987 cites W2322016311 @default.
- W2070548987 cites W2326202471 @default.
- W2070548987 cites W2340940993 @default.
- W2070548987 cites W4244209136 @default.
- W2070548987 doi "https://doi.org/10.1074/jbc.270.51.30434" @default.
- W2070548987 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/8530471" @default.
- W2070548987 hasPublicationYear "1995" @default.
- W2070548987 type Work @default.
- W2070548987 sameAs 2070548987 @default.
- W2070548987 citedByCount "225" @default.
- W2070548987 countsByYear W20705489872012 @default.
- W2070548987 countsByYear W20705489872013 @default.
- W2070548987 countsByYear W20705489872014 @default.
- W2070548987 countsByYear W20705489872015 @default.
- W2070548987 countsByYear W20705489872016 @default.
- W2070548987 countsByYear W20705489872017 @default.
- W2070548987 countsByYear W20705489872018 @default.
- W2070548987 countsByYear W20705489872019 @default.
- W2070548987 countsByYear W20705489872020 @default.
- W2070548987 countsByYear W20705489872021 @default.
- W2070548987 countsByYear W20705489872022 @default.
- W2070548987 countsByYear W20705489872023 @default.
- W2070548987 crossrefType "journal-article" @default.
- W2070548987 hasAuthorship W2070548987A5028881112 @default.
- W2070548987 hasAuthorship W2070548987A5079293470 @default.
- W2070548987 hasBestOaLocation W20705489871 @default.
- W2070548987 hasConcept C121332964 @default.
- W2070548987 hasConcept C139066938 @default.
- W2070548987 hasConcept C148898269 @default.
- W2070548987 hasConcept C155647269 @default.
- W2070548987 hasConcept C162008176 @default.
- W2070548987 hasConcept C178790620 @default.
- W2070548987 hasConcept C179104552 @default.
- W2070548987 hasConcept C181199279 @default.
- W2070548987 hasConcept C185592680 @default.
- W2070548987 hasConcept C18903297 @default.
- W2070548987 hasConcept C201956729 @default.
- W2070548987 hasConcept C203014093 @default.