Matches in SemOpenAlex for { <https://semopenalex.org/work/W2070592162> ?p ?o ?g. }
- W2070592162 endingPage "4233" @default.
- W2070592162 startingPage "4219" @default.
- W2070592162 abstract "Bulk Cd adsorption isotherm experiments, thermodynamic equilibrium modeling, and Cd K edge EXAFS were used to constrain the mechanisms of proton and Cd adsorption to bacterial cells of the commonly occurring Gram-positive and Gram-negative bacteria, Bacillus subtilis and Shewanella oneidensis , respectively. Potentiometric titrations were used to characterize the functional group reactivity of the S. oneidensis cells, and we model the titration data using the same type of non-electrostatic surface complexation approach as was applied to titrations of B. subtilis suspensions by Fein et al. (2005) . Similar to the results for B. subtilis , the S. oneidensis cells exhibit buffering behavior from approximately pH 3–9 that requires the presence of four distinct sites, with p K a values of 3.3 ± 0.2, 4.8 ± 0.2, 6.7 ± 0.4, and 9.4 ± 0.5, and site concentrations of 8.9(±2.6) × 10 −5 , 1.3(±0.2) × 10 −4 , 5.9(±3.3) × 10 −5 , and 1.1(±0.6) × 10 −4 moles/g bacteria (wet mass), respectively. The bulk Cd isotherm adsorption data for both species, conducted at pH 5.9 as a function of Cd concentration at a fixed biomass concentration, were best modeled by reactions with a Cd:site stoichiometry of 1:1. EXAFS data were collected for both bacterial species as a function of Cd concentration at pH 5.9 and 10 g/L bacteria. The EXAFS results show that the same types of binding sites are responsible for Cd sorption to both bacterial species at all Cd loadings tested (1–200 ppm). Carboxyl sites are responsible for the binding at intermediate Cd loadings. Phosphoryl ligands are more important than carboxyl ligands for Cd binding at high Cd loadings. For the lowest Cd loadings studied here, a sulfhydryl site was found to dominate the bound Cd budgets for both species, in addition to the carboxyl and phosphoryl sites that dominate the higher loadings. The EXAFS results suggest that both Gram-positive and Gram-negative bacterial cell walls have a low concentration of very high-affinity sulfhydryl sites which become masked by the more abundant carboxyl and phosphoryl sites at higher metal:bacteria ratios. This study demonstrates that metal loading plays a vital role in determining the important metal-binding reactions that occur on bacterial cell walls, and that high affinity, low-density sites can be revealed by spectroscopy of biomass samples. Such sites may control the fate and transport of metals in realistic geologic settings, where metal concentrations are low." @default.
- W2070592162 created "2016-06-24" @default.
- W2070592162 creator A5010806197 @default.
- W2070592162 creator A5022876429 @default.
- W2070592162 creator A5043780489 @default.
- W2070592162 creator A5049206261 @default.
- W2070592162 creator A5060972065 @default.
- W2070592162 creator A5070557993 @default.
- W2070592162 date "2010-08-01" @default.
- W2070592162 modified "2023-09-29" @default.
- W2070592162 title "High- and low-affinity binding sites for Cd on the bacterial cell walls of Bacillus subtilis and Shewanella oneidensis" @default.
- W2070592162 cites W1537265286 @default.
- W2070592162 cites W1539546889 @default.
- W2070592162 cites W1573998336 @default.
- W2070592162 cites W1601430150 @default.
- W2070592162 cites W1964345545 @default.
- W2070592162 cites W1968254587 @default.
- W2070592162 cites W1978450379 @default.
- W2070592162 cites W1978478873 @default.
- W2070592162 cites W1982270112 @default.
- W2070592162 cites W1982536024 @default.
- W2070592162 cites W1983138570 @default.
- W2070592162 cites W1988262733 @default.
- W2070592162 cites W1996358191 @default.
- W2070592162 cites W1996551500 @default.
- W2070592162 cites W1998860650 @default.
- W2070592162 cites W2002304179 @default.
- W2070592162 cites W2002683826 @default.
- W2070592162 cites W2005859799 @default.
- W2070592162 cites W2008029640 @default.
- W2070592162 cites W2008518848 @default.
- W2070592162 cites W2009897935 @default.
- W2070592162 cites W2011093421 @default.
- W2070592162 cites W2016243487 @default.
- W2070592162 cites W2016308458 @default.
- W2070592162 cites W2018222553 @default.
- W2070592162 cites W2019052896 @default.
- W2070592162 cites W2020140234 @default.
- W2070592162 cites W2020322048 @default.
- W2070592162 cites W2021178343 @default.
- W2070592162 cites W2024326695 @default.
- W2070592162 cites W2031361962 @default.
- W2070592162 cites W2036523222 @default.
- W2070592162 cites W2038195599 @default.
- W2070592162 cites W2039128307 @default.
- W2070592162 cites W2040964588 @default.
- W2070592162 cites W2041097461 @default.
- W2070592162 cites W2041240775 @default.
- W2070592162 cites W2051470133 @default.
- W2070592162 cites W2053531963 @default.
- W2070592162 cites W2054839544 @default.
- W2070592162 cites W2056685658 @default.
- W2070592162 cites W2058294136 @default.
- W2070592162 cites W2068073342 @default.
- W2070592162 cites W2070227796 @default.
- W2070592162 cites W2070720388 @default.
- W2070592162 cites W2075652389 @default.
- W2070592162 cites W2075752851 @default.
- W2070592162 cites W2085944512 @default.
- W2070592162 cites W2088991848 @default.
- W2070592162 cites W2093213306 @default.
- W2070592162 cites W2094396843 @default.
- W2070592162 cites W2102155914 @default.
- W2070592162 cites W2103718115 @default.
- W2070592162 cites W2109553927 @default.
- W2070592162 cites W2118337655 @default.
- W2070592162 cites W2127420167 @default.
- W2070592162 cites W2152718392 @default.
- W2070592162 cites W2164376214 @default.
- W2070592162 doi "https://doi.org/10.1016/j.gca.2010.02.019" @default.
- W2070592162 hasPublicationYear "2010" @default.
- W2070592162 type Work @default.
- W2070592162 sameAs 2070592162 @default.
- W2070592162 citedByCount "104" @default.
- W2070592162 countsByYear W20705921622012 @default.
- W2070592162 countsByYear W20705921622013 @default.
- W2070592162 countsByYear W20705921622014 @default.
- W2070592162 countsByYear W20705921622015 @default.
- W2070592162 countsByYear W20705921622016 @default.
- W2070592162 countsByYear W20705921622017 @default.
- W2070592162 countsByYear W20705921622018 @default.
- W2070592162 countsByYear W20705921622019 @default.
- W2070592162 countsByYear W20705921622020 @default.
- W2070592162 countsByYear W20705921622021 @default.
- W2070592162 countsByYear W20705921622022 @default.
- W2070592162 countsByYear W20705921622023 @default.
- W2070592162 crossrefType "journal-article" @default.
- W2070592162 hasAuthorship W2070592162A5010806197 @default.
- W2070592162 hasAuthorship W2070592162A5022876429 @default.
- W2070592162 hasAuthorship W2070592162A5043780489 @default.
- W2070592162 hasAuthorship W2070592162A5049206261 @default.
- W2070592162 hasAuthorship W2070592162A5060972065 @default.
- W2070592162 hasAuthorship W2070592162A5070557993 @default.
- W2070592162 hasConcept C107861141 @default.
- W2070592162 hasConcept C119824511 @default.
- W2070592162 hasConcept C121332964 @default.
- W2070592162 hasConcept C124614425 @default.
- W2070592162 hasConcept C13965031 @default.