Matches in SemOpenAlex for { <https://semopenalex.org/work/W2070753451> ?p ?o ?g. }
- W2070753451 endingPage "73" @default.
- W2070753451 startingPage "73" @default.
- W2070753451 abstract "A simple and efficient adaptive local mesh refinement algorithm is devised and analyzed for two-phase Stefan problems in 2D. A typical triangulation is coarse away from the discrete interface, where discretization parameters satisfy a parabolic relation, whereas it is locally refined in the vicinity of the discrete interface so that the relation becomes hyperbolic. Several numerical tests are performed on the computed temperature to extract information about its first and second derivatives as well as to predict discrete free boundary locations. Mesh selection is based upon equidistributing pointwise interpolation errors between consecutive meshes and imposing that discrete interfaces belong to the so-called refined region. Consecutive meshes are not compatible in that they are not produced by enrichment or coarsening procedures but rather regenerated. A general theory for interpolation between noncompatible meshes is set up in ${L^p}$-based norms. The resulting scheme is stable in various Sobolev norms and necessitates fewer spatial degrees of freedom than previous practical methods on quasi-uniform meshes, namely $O({tau ^{ - 3/2}})$ as opposed to $O({tau ^{ - 2}})$, to achieve the same global asymptotic accuracy; here $tau > 0$ is the (uniform) time step. A rate of convergence of essentially $O({tau ^{1/2}})$ is derived in the natural energy spaces provided the total number of mesh changes is restricted to $O({tau ^{ - 1/2}})$, which in turn is compatible with the mesh selection procedure. An auxiliary quasi-optimal pointwise error estimate for the Laplace operator is proved as well. Numerical results illustrate the schemeâs efficiency in approximating both solutions and interfaces." @default.
- W2070753451 created "2016-06-24" @default.
- W2070753451 creator A5040883953 @default.
- W2070753451 creator A5073262759 @default.
- W2070753451 creator A5083012894 @default.
- W2070753451 date "1991-09-01" @default.
- W2070753451 modified "2023-09-24" @default.
- W2070753451 title "An adaptive finite element method for two-phase Stefan problems in two space dimensions. I. Stability and error estimates" @default.
- W2070753451 cites W1955535265 @default.
- W2070753451 cites W1967764272 @default.
- W2070753451 cites W1978926871 @default.
- W2070753451 cites W1985642229 @default.
- W2070753451 cites W1997717231 @default.
- W2070753451 cites W2004159880 @default.
- W2070753451 cites W2005534386 @default.
- W2070753451 cites W2029166565 @default.
- W2070753451 cites W2036333759 @default.
- W2070753451 cites W2038626747 @default.
- W2070753451 cites W2041523977 @default.
- W2070753451 cites W2048979133 @default.
- W2070753451 cites W2055194835 @default.
- W2070753451 cites W2061163580 @default.
- W2070753451 cites W2062438340 @default.
- W2070753451 cites W2070621570 @default.
- W2070753451 cites W2079222732 @default.
- W2070753451 cites W2081063298 @default.
- W2070753451 cites W2083115061 @default.
- W2070753451 cites W2083229688 @default.
- W2070753451 cites W2917137862 @default.
- W2070753451 cites W3046787446 @default.
- W2070753451 cites W604177120 @default.
- W2070753451 cites W988598953 @default.
- W2070753451 doi "https://doi.org/10.1090/s0025-5718-1991-1079028-x" @default.
- W2070753451 hasPublicationYear "1991" @default.
- W2070753451 type Work @default.
- W2070753451 sameAs 2070753451 @default.
- W2070753451 citedByCount "18" @default.
- W2070753451 countsByYear W20707534512012 @default.
- W2070753451 countsByYear W20707534512014 @default.
- W2070753451 countsByYear W20707534512017 @default.
- W2070753451 countsByYear W20707534512020 @default.
- W2070753451 crossrefType "journal-article" @default.
- W2070753451 hasAuthorship W2070753451A5040883953 @default.
- W2070753451 hasAuthorship W2070753451A5073262759 @default.
- W2070753451 hasAuthorship W2070753451A5083012894 @default.
- W2070753451 hasBestOaLocation W20707534511 @default.
- W2070753451 hasConcept C121332964 @default.
- W2070753451 hasConcept C121684516 @default.
- W2070753451 hasConcept C127162648 @default.
- W2070753451 hasConcept C134306372 @default.
- W2070753451 hasConcept C135628077 @default.
- W2070753451 hasConcept C135981907 @default.
- W2070753451 hasConcept C137800194 @default.
- W2070753451 hasConcept C2524010 @default.
- W2070753451 hasConcept C2777984123 @default.
- W2070753451 hasConcept C2778021227 @default.
- W2070753451 hasConcept C28826006 @default.
- W2070753451 hasConcept C31258907 @default.
- W2070753451 hasConcept C31487907 @default.
- W2070753451 hasConcept C33923547 @default.
- W2070753451 hasConcept C41008148 @default.
- W2070753451 hasConcept C502989409 @default.
- W2070753451 hasConcept C57869625 @default.
- W2070753451 hasConcept C62354387 @default.
- W2070753451 hasConcept C73000952 @default.
- W2070753451 hasConcept C97355855 @default.
- W2070753451 hasConcept C99730327 @default.
- W2070753451 hasConceptScore W2070753451C121332964 @default.
- W2070753451 hasConceptScore W2070753451C121684516 @default.
- W2070753451 hasConceptScore W2070753451C127162648 @default.
- W2070753451 hasConceptScore W2070753451C134306372 @default.
- W2070753451 hasConceptScore W2070753451C135628077 @default.
- W2070753451 hasConceptScore W2070753451C135981907 @default.
- W2070753451 hasConceptScore W2070753451C137800194 @default.
- W2070753451 hasConceptScore W2070753451C2524010 @default.
- W2070753451 hasConceptScore W2070753451C2777984123 @default.
- W2070753451 hasConceptScore W2070753451C2778021227 @default.
- W2070753451 hasConceptScore W2070753451C28826006 @default.
- W2070753451 hasConceptScore W2070753451C31258907 @default.
- W2070753451 hasConceptScore W2070753451C31487907 @default.
- W2070753451 hasConceptScore W2070753451C33923547 @default.
- W2070753451 hasConceptScore W2070753451C41008148 @default.
- W2070753451 hasConceptScore W2070753451C502989409 @default.
- W2070753451 hasConceptScore W2070753451C57869625 @default.
- W2070753451 hasConceptScore W2070753451C62354387 @default.
- W2070753451 hasConceptScore W2070753451C73000952 @default.
- W2070753451 hasConceptScore W2070753451C97355855 @default.
- W2070753451 hasConceptScore W2070753451C99730327 @default.
- W2070753451 hasIssue "195" @default.
- W2070753451 hasLocation W20707534511 @default.
- W2070753451 hasOpenAccess W2070753451 @default.
- W2070753451 hasPrimaryLocation W20707534511 @default.
- W2070753451 hasRelatedWork W2007190909 @default.
- W2070753451 hasRelatedWork W2118016404 @default.
- W2070753451 hasRelatedWork W2163498872 @default.
- W2070753451 hasRelatedWork W2169592479 @default.
- W2070753451 hasRelatedWork W2322626341 @default.
- W2070753451 hasRelatedWork W2798493297 @default.