Matches in SemOpenAlex for { <https://semopenalex.org/work/W2070796617> ?p ?o ?g. }
- W2070796617 endingPage "369" @default.
- W2070796617 startingPage "360" @default.
- W2070796617 abstract "Most common human diseases are likely to have complex etiologies. Methods of analysis that allow for the phenomenon of epistasis are of growing interest in the genetic dissection of complex diseases. By allowing for epistatic interactions between potential disease loci, we may succeed in identifying genetic variants that might otherwise have remained undetected. Here we aimed to analyze the ability of logistic regression (LR) and two tree-based supervised learning methods, classification and regression trees (CART) and random forest (RF), to detect epistasis. Multifactor-dimensionality reduction (MDR) was also used for comparison. Our approach involves first the simulation of datasets of autosomal biallelic unphased and unlinked single nucleotide polymorphisms (SNPs), each containing a two-loci interaction (causal SNPs) and 98 'noise' SNPs. We modelled interactions under different scenarios of sample size, missing data, minor allele frequencies (MAF) and several penetrance models: three involving both (indistinguishable) marginal effects and interaction, and two simulating pure interaction effects. In total, we have simulated 99 different scenarios. Although CART, RF, and LR yield similar results in terms of detection of true association, CART and RF perform better than LR with respect to classification error. MAF, penetrance model, and sample size are greater determining factors than percentage of missing data in the ability of the different techniques to detect true association. In pure interaction models, only RF detects association. In conclusion, tree-based methods and LR are important statistical tools for the detection of unknown interactions among true risk-associated SNPs with marginal effects and in the presence of a significant number of noise SNPs. In pure interaction models, RF performs reasonably well in the presence of large sample sizes and low percentages of missing data. However, when the study design is suboptimal (unfavourable to detect interaction in terms of e.g. sample size and MAF) there is a high chance of detecting false, spurious associations." @default.
- W2070796617 created "2016-06-24" @default.
- W2070796617 creator A5004840474 @default.
- W2070796617 creator A5035599338 @default.
- W2070796617 creator A5060486194 @default.
- W2070796617 creator A5086482785 @default.
- W2070796617 date "2009-04-28" @default.
- W2070796617 modified "2023-10-18" @default.
- W2070796617 title "Evaluating the Ability of Tree-Based Methods and Logistic Regression for the Detection of SNP-SNP Interaction" @default.
- W2070796617 cites W1480376833 @default.
- W2070796617 cites W1539593569 @default.
- W2070796617 cites W1690786713 @default.
- W2070796617 cites W1898792859 @default.
- W2070796617 cites W1980175560 @default.
- W2070796617 cites W1998070092 @default.
- W2070796617 cites W2029278190 @default.
- W2070796617 cites W2031873733 @default.
- W2070796617 cites W2064539914 @default.
- W2070796617 cites W2068744742 @default.
- W2070796617 cites W2075691011 @default.
- W2070796617 cites W2085739707 @default.
- W2070796617 cites W2086099578 @default.
- W2070796617 cites W2097364929 @default.
- W2070796617 cites W2102109283 @default.
- W2070796617 cites W2118921994 @default.
- W2070796617 cites W2123425144 @default.
- W2070796617 cites W2125779167 @default.
- W2070796617 cites W2131878646 @default.
- W2070796617 cites W2154572047 @default.
- W2070796617 cites W2217809488 @default.
- W2070796617 cites W2911964244 @default.
- W2070796617 doi "https://doi.org/10.1111/j.1469-1809.2009.00511.x" @default.
- W2070796617 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19291098" @default.
- W2070796617 hasPublicationYear "2009" @default.
- W2070796617 type Work @default.
- W2070796617 sameAs 2070796617 @default.
- W2070796617 citedByCount "64" @default.
- W2070796617 countsByYear W20707966172012 @default.
- W2070796617 countsByYear W20707966172013 @default.
- W2070796617 countsByYear W20707966172014 @default.
- W2070796617 countsByYear W20707966172015 @default.
- W2070796617 countsByYear W20707966172016 @default.
- W2070796617 countsByYear W20707966172018 @default.
- W2070796617 countsByYear W20707966172019 @default.
- W2070796617 countsByYear W20707966172020 @default.
- W2070796617 countsByYear W20707966172021 @default.
- W2070796617 countsByYear W20707966172022 @default.
- W2070796617 countsByYear W20707966172023 @default.
- W2070796617 crossrefType "journal-article" @default.
- W2070796617 hasAuthorship W2070796617A5004840474 @default.
- W2070796617 hasAuthorship W2070796617A5035599338 @default.
- W2070796617 hasAuthorship W2070796617A5060486194 @default.
- W2070796617 hasAuthorship W2070796617A5086482785 @default.
- W2070796617 hasBestOaLocation W20707966171 @default.
- W2070796617 hasConcept C104317684 @default.
- W2070796617 hasConcept C105795698 @default.
- W2070796617 hasConcept C106208931 @default.
- W2070796617 hasConcept C113174947 @default.
- W2070796617 hasConcept C127413603 @default.
- W2070796617 hasConcept C127716648 @default.
- W2070796617 hasConcept C129848803 @default.
- W2070796617 hasConcept C134306372 @default.
- W2070796617 hasConcept C135763542 @default.
- W2070796617 hasConcept C139275648 @default.
- W2070796617 hasConcept C144621757 @default.
- W2070796617 hasConcept C151956035 @default.
- W2070796617 hasConcept C153209595 @default.
- W2070796617 hasConcept C154945302 @default.
- W2070796617 hasConcept C157410074 @default.
- W2070796617 hasConcept C169258074 @default.
- W2070796617 hasConcept C186413461 @default.
- W2070796617 hasConcept C200544954 @default.
- W2070796617 hasConcept C25249476 @default.
- W2070796617 hasConcept C2777275308 @default.
- W2070796617 hasConcept C33923547 @default.
- W2070796617 hasConcept C41008148 @default.
- W2070796617 hasConcept C54355233 @default.
- W2070796617 hasConcept C61727976 @default.
- W2070796617 hasConcept C78519656 @default.
- W2070796617 hasConcept C83546350 @default.
- W2070796617 hasConcept C86803240 @default.
- W2070796617 hasConcept C9357733 @default.
- W2070796617 hasConceptScore W2070796617C104317684 @default.
- W2070796617 hasConceptScore W2070796617C105795698 @default.
- W2070796617 hasConceptScore W2070796617C106208931 @default.
- W2070796617 hasConceptScore W2070796617C113174947 @default.
- W2070796617 hasConceptScore W2070796617C127413603 @default.
- W2070796617 hasConceptScore W2070796617C127716648 @default.
- W2070796617 hasConceptScore W2070796617C129848803 @default.
- W2070796617 hasConceptScore W2070796617C134306372 @default.
- W2070796617 hasConceptScore W2070796617C135763542 @default.
- W2070796617 hasConceptScore W2070796617C139275648 @default.
- W2070796617 hasConceptScore W2070796617C144621757 @default.
- W2070796617 hasConceptScore W2070796617C151956035 @default.
- W2070796617 hasConceptScore W2070796617C153209595 @default.
- W2070796617 hasConceptScore W2070796617C154945302 @default.
- W2070796617 hasConceptScore W2070796617C157410074 @default.
- W2070796617 hasConceptScore W2070796617C169258074 @default.