Matches in SemOpenAlex for { <https://semopenalex.org/work/W2070797424> ?p ?o ?g. }
- W2070797424 endingPage "2008" @default.
- W2070797424 startingPage "1992" @default.
- W2070797424 abstract "Given that radar-based rainfall has been broadly applied in hydrological studies, quantitative modelling of its uncertainty is critically important, as the error of input rainfall is the main source of error in hydrological modelling. Using an ensemble of rainfall estimates is an elegant solution to characterize the uncertainty of radar-based rainfall and its spatial and temporal variability. This paper has fully formulated an ensemble generator for radar precipitation estimation based on the copula method. Each ensemble member is a probable realization that represents the unknown true rainfall field based on the distribution of radar rainfall (RR) error and its spatial error structure. An uncertainty model consisting of a deterministic component and a random error factor is presented based on the distribution of gauge rainfall conditioned on the radar rainfall (GR|RR). Two kinds of copulas (elliptical and Archimedean copulas) are introduced to generate random errors, which are imposed by the deterministic component. The elliptical copulas (e.g. Gaussian and t-copula) generate the random errors based on the multivariate distribution, typically of decomposition of the error correlation matrix using the LU decomposition algorithm. The Archimedean copulas (e.g. Clayton and Gumbel) utilize the conditional dependence between different radar pixels to obtain random errors. Based on those, a case application is carried out in the Brue catchment located in southwest England. The results show that the simulated uncertainty bands of rainfall encompass most of the reference raingauge measurements with good agreement between the simulated and observed spatial dependences. This indicates that the proposed scheme is a statistically reliable method in ensemble radar rainfall generation and is a useful tool for describing radar rainfall uncertainty.Editor D. Koutsoyiannis; Associate editor S. Grimaldi" @default.
- W2070797424 created "2016-06-24" @default.
- W2070797424 creator A5008643995 @default.
- W2070797424 creator A5026564713 @default.
- W2070797424 creator A5045976550 @default.
- W2070797424 creator A5085430854 @default.
- W2070797424 date "2014-09-23" @default.
- W2070797424 modified "2023-10-06" @default.
- W2070797424 title "Modelling radar-rainfall estimation uncertainties using elliptical and Archimedean copulas with different marginal distributions" @default.
- W2070797424 cites W101929070 @default.
- W2070797424 cites W1522807526 @default.
- W2070797424 cites W1527594523 @default.
- W2070797424 cites W1627706303 @default.
- W2070797424 cites W1649253606 @default.
- W2070797424 cites W1909649765 @default.
- W2070797424 cites W1966076332 @default.
- W2070797424 cites W1968404019 @default.
- W2070797424 cites W1968513562 @default.
- W2070797424 cites W1969962796 @default.
- W2070797424 cites W1972454075 @default.
- W2070797424 cites W1980603194 @default.
- W2070797424 cites W1982392366 @default.
- W2070797424 cites W1986759396 @default.
- W2070797424 cites W1989669046 @default.
- W2070797424 cites W1995763238 @default.
- W2070797424 cites W1998777215 @default.
- W2070797424 cites W2000087577 @default.
- W2070797424 cites W2005986688 @default.
- W2070797424 cites W2007844954 @default.
- W2070797424 cites W2009040065 @default.
- W2070797424 cites W2010438871 @default.
- W2070797424 cites W2014325697 @default.
- W2070797424 cites W2015833712 @default.
- W2070797424 cites W2016361409 @default.
- W2070797424 cites W2016443842 @default.
- W2070797424 cites W2018561789 @default.
- W2070797424 cites W2030134440 @default.
- W2070797424 cites W2032250217 @default.
- W2070797424 cites W2043929744 @default.
- W2070797424 cites W2045891393 @default.
- W2070797424 cites W2047017911 @default.
- W2070797424 cites W2048992905 @default.
- W2070797424 cites W2052767937 @default.
- W2070797424 cites W2053229579 @default.
- W2070797424 cites W2054957279 @default.
- W2070797424 cites W2056475962 @default.
- W2070797424 cites W2056664349 @default.
- W2070797424 cites W2062982334 @default.
- W2070797424 cites W2070469752 @default.
- W2070797424 cites W2072338019 @default.
- W2070797424 cites W2076125441 @default.
- W2070797424 cites W2089938454 @default.
- W2070797424 cites W2092864121 @default.
- W2070797424 cites W2096350564 @default.
- W2070797424 cites W2096701604 @default.
- W2070797424 cites W2098280243 @default.
- W2070797424 cites W2099329408 @default.
- W2070797424 cites W2099337439 @default.
- W2070797424 cites W2103622443 @default.
- W2070797424 cites W2108429278 @default.
- W2070797424 cites W2113798612 @default.
- W2070797424 cites W2115345337 @default.
- W2070797424 cites W2118905223 @default.
- W2070797424 cites W2120162412 @default.
- W2070797424 cites W2124738823 @default.
- W2070797424 cites W2126583263 @default.
- W2070797424 cites W2143022286 @default.
- W2070797424 cites W2143671190 @default.
- W2070797424 cites W2144543652 @default.
- W2070797424 cites W2146736399 @default.
- W2070797424 cites W2147871842 @default.
- W2070797424 cites W2153525715 @default.
- W2070797424 cites W2154287466 @default.
- W2070797424 cites W2157367027 @default.
- W2070797424 cites W2158114082 @default.
- W2070797424 cites W2170014258 @default.
- W2070797424 cites W2174673989 @default.
- W2070797424 cites W2180526405 @default.
- W2070797424 cites W2482959850 @default.
- W2070797424 cites W2507039649 @default.
- W2070797424 cites W4235564685 @default.
- W2070797424 cites W4243088628 @default.
- W2070797424 cites W4252391766 @default.
- W2070797424 cites W88422384 @default.
- W2070797424 cites W988026 @default.
- W2070797424 doi "https://doi.org/10.1080/02626667.2013.865841" @default.
- W2070797424 hasPublicationYear "2014" @default.
- W2070797424 type Work @default.
- W2070797424 sameAs 2070797424 @default.
- W2070797424 citedByCount "18" @default.
- W2070797424 countsByYear W20707974242014 @default.
- W2070797424 countsByYear W20707974242015 @default.
- W2070797424 countsByYear W20707974242017 @default.
- W2070797424 countsByYear W20707974242018 @default.
- W2070797424 countsByYear W20707974242019 @default.
- W2070797424 countsByYear W20707974242020 @default.
- W2070797424 countsByYear W20707974242021 @default.
- W2070797424 countsByYear W20707974242022 @default.