Matches in SemOpenAlex for { <https://semopenalex.org/work/W2070932504> ?p ?o ?g. }
- W2070932504 endingPage "20733" @default.
- W2070932504 startingPage "20719" @default.
- W2070932504 abstract "Computation of living processes creates great promise for the everyday life of mankind and great challenges for physical scientists. Simulations of molecular dynamics have great appeal to biologists as a natural extension of structural biology. Once a biologist sees a structure, she/he wants to see it move. Molecular biology has shown that a small number of atoms, sometimes even one messenger ion, like Ca2+, can control biological function on the scale of cells, organs, tissues, and organisms. Enormously concentrated ions, at number densities of ∼20 M, in protein channels and enzymes are responsible for many of the characteristics of living systems, just as highly concentrated ions near electrodes are responsible for many of the characteristics of electrochemical systems. Here we confront the reality of the scale differences of ions. We show that the scale differences needed to simulate all the atoms of biological cells are 107 in linear dimension, 1021 in three dimensions, 109 in resolution, 1011 in time, and 1013 in particle number (to deal with concentrations of Ca2+). These scales must be dealt with simultaneously if the simulation is to deal with most biological functions. Biological function extends across all of them, all at once in most cases. We suggest a computational approach using explicit multiscale analysis instead of implicit simulation of all scales. The approach is based on an energy variational principle EnVarA introduced by Chun Liu to deal with complex fluids. Variational methods deal automatically with multiple interacting components and scales. When an additional component is added to the system, the resulting Euler−Lagrange field equations change form automatically, by algebra alone, without additional unknown parameters. Multifaceted interactions are solutions of the resulting equations. We suggest that ionic solutions should be viewed as complex fluids with simple components. Highly concentrated solutions, dominated by interactions of components, are easily computed by EnVarA. Successful computation of ions concentrated in special places may be a significant step to understanding the defining characteristics of biological and electrochemical systems. Indeed, computing ions near proteins and nucleic acids may prove as important to molecular biology and chemical technology as computing holes and electrons has been to our semiconductor and digital technology." @default.
- W2070932504 created "2016-06-24" @default.
- W2070932504 creator A5091003144 @default.
- W2070932504 date "2010-10-21" @default.
- W2070932504 modified "2023-10-17" @default.
- W2070932504 title "Multiple Scales in the Simulation of Ion Channels and Proteins" @default.
- W2070932504 cites W1494409743 @default.
- W2070932504 cites W1531455566 @default.
- W2070932504 cites W1569512821 @default.
- W2070932504 cites W1608234917 @default.
- W2070932504 cites W161730124 @default.
- W2070932504 cites W1928629620 @default.
- W2070932504 cites W1965272075 @default.
- W2070932504 cites W1966925502 @default.
- W2070932504 cites W1968324756 @default.
- W2070932504 cites W1972769670 @default.
- W2070932504 cites W1975426120 @default.
- W2070932504 cites W1976726632 @default.
- W2070932504 cites W1978556728 @default.
- W2070932504 cites W1984922264 @default.
- W2070932504 cites W1991240354 @default.
- W2070932504 cites W1992971218 @default.
- W2070932504 cites W1994117860 @default.
- W2070932504 cites W1997596874 @default.
- W2070932504 cites W2002116790 @default.
- W2070932504 cites W2002484456 @default.
- W2070932504 cites W2005893770 @default.
- W2070932504 cites W2006797890 @default.
- W2070932504 cites W2010007191 @default.
- W2070932504 cites W2011372139 @default.
- W2070932504 cites W2013351745 @default.
- W2070932504 cites W2013351998 @default.
- W2070932504 cites W2013801219 @default.
- W2070932504 cites W2017063246 @default.
- W2070932504 cites W2017522634 @default.
- W2070932504 cites W2020039237 @default.
- W2070932504 cites W2020425611 @default.
- W2070932504 cites W2026698196 @default.
- W2070932504 cites W2030155227 @default.
- W2070932504 cites W2030723576 @default.
- W2070932504 cites W2033102303 @default.
- W2070932504 cites W2037988075 @default.
- W2070932504 cites W2038645629 @default.
- W2070932504 cites W2040648700 @default.
- W2070932504 cites W2042041292 @default.
- W2070932504 cites W2047696693 @default.
- W2070932504 cites W2048747418 @default.
- W2070932504 cites W2049034279 @default.
- W2070932504 cites W2050255865 @default.
- W2070932504 cites W2053544741 @default.
- W2070932504 cites W2053703820 @default.
- W2070932504 cites W2054372210 @default.
- W2070932504 cites W2057876304 @default.
- W2070932504 cites W2059350070 @default.
- W2070932504 cites W2066363083 @default.
- W2070932504 cites W2081588627 @default.
- W2070932504 cites W2084505518 @default.
- W2070932504 cites W2095863823 @default.
- W2070932504 cites W2102667231 @default.
- W2070932504 cites W2109672572 @default.
- W2070932504 cites W2121064838 @default.
- W2070932504 cites W2123537942 @default.
- W2070932504 cites W2126968092 @default.
- W2070932504 cites W2137053768 @default.
- W2070932504 cites W2143341463 @default.
- W2070932504 cites W2144992168 @default.
- W2070932504 cites W2146686098 @default.
- W2070932504 cites W2147722083 @default.
- W2070932504 cites W2151655714 @default.
- W2070932504 cites W2157649093 @default.
- W2070932504 cites W2168658893 @default.
- W2070932504 cites W2170339701 @default.
- W2070932504 cites W2170447219 @default.
- W2070932504 cites W2314118227 @default.
- W2070932504 cites W2322250088 @default.
- W2070932504 cites W2492646125 @default.
- W2070932504 cites W2963516047 @default.
- W2070932504 cites W3105278774 @default.
- W2070932504 cites W3128024320 @default.
- W2070932504 cites W4230373105 @default.
- W2070932504 cites W4240733111 @default.
- W2070932504 cites W4244360209 @default.
- W2070932504 cites W4245211793 @default.
- W2070932504 cites W4246586187 @default.
- W2070932504 cites W4298132033 @default.
- W2070932504 doi "https://doi.org/10.1021/jp106760t" @default.
- W2070932504 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2996618" @default.
- W2070932504 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21135913" @default.
- W2070932504 hasPublicationYear "2010" @default.
- W2070932504 type Work @default.
- W2070932504 sameAs 2070932504 @default.
- W2070932504 citedByCount "42" @default.
- W2070932504 countsByYear W20709325042012 @default.
- W2070932504 countsByYear W20709325042013 @default.
- W2070932504 countsByYear W20709325042014 @default.
- W2070932504 countsByYear W20709325042015 @default.
- W2070932504 countsByYear W20709325042016 @default.
- W2070932504 countsByYear W20709325042018 @default.