Matches in SemOpenAlex for { <https://semopenalex.org/work/W2071063243> ?p ?o ?g. }
- W2071063243 abstract "We propose a method for learning linear upsampling operators for physically-based cloth simulation, allowing us to enrich coarse meshes with mid-scale details in minimal time and memory budgets, as required in computer games. In contrast to classical subdivision schemes, our operators adapt to a specific context (e.g. a flag flapping in the wind or a skirt worn by a character), which allows them to achieve higher detail. Our method starts by pre-computing a pair of coarse and fine training simulations aligned with tracking constraints using harmonic test functions. Next, we train the upsampling operators with a new regularization method that enables us to learn mid-scale details without overfitting. We demonstrate generalizability to unseen conditions such as different wind velocities or novel character motions. Finally, we discuss how to re-introduce high frequency details not explainable by the coarse mesh alone using oscillatory modes." @default.
- W2071063243 created "2016-06-24" @default.
- W2071063243 creator A5028216970 @default.
- W2071063243 creator A5042859241 @default.
- W2071063243 creator A5061663420 @default.
- W2071063243 creator A5077094895 @default.
- W2071063243 date "2011-01-01" @default.
- W2071063243 modified "2023-09-25" @default.
- W2071063243 title "Physics-inspired upsampling for cloth simulation in games" @default.
- W2071063243 cites W126840538 @default.
- W2071063243 cites W139900138 @default.
- W2071063243 cites W1515150373 @default.
- W2071063243 cites W1537561328 @default.
- W2071063243 cites W1581078542 @default.
- W2071063243 cites W1967494143 @default.
- W2071063243 cites W1971020676 @default.
- W2071063243 cites W1974956622 @default.
- W2071063243 cites W1976986327 @default.
- W2071063243 cites W1981603350 @default.
- W2071063243 cites W1984448916 @default.
- W2071063243 cites W1989977076 @default.
- W2071063243 cites W1992327090 @default.
- W2071063243 cites W1994393928 @default.
- W2071063243 cites W1998421485 @default.
- W2071063243 cites W2004647495 @default.
- W2071063243 cites W2006212003 @default.
- W2071063243 cites W2032113491 @default.
- W2071063243 cites W2056316267 @default.
- W2071063243 cites W2063847618 @default.
- W2071063243 cites W2064330201 @default.
- W2071063243 cites W2075605912 @default.
- W2071063243 cites W2075665712 @default.
- W2071063243 cites W2083460753 @default.
- W2071063243 cites W2090871356 @default.
- W2071063243 cites W2096094923 @default.
- W2071063243 cites W2100237166 @default.
- W2071063243 cites W2101165370 @default.
- W2071063243 cites W2109683418 @default.
- W2071063243 cites W2111124997 @default.
- W2071063243 cites W2130779824 @default.
- W2071063243 cites W2132836675 @default.
- W2071063243 cites W2141654056 @default.
- W2071063243 cites W2141839129 @default.
- W2071063243 cites W2142123552 @default.
- W2071063243 cites W2149410175 @default.
- W2071063243 cites W2164445273 @default.
- W2071063243 cites W2168582830 @default.
- W2071063243 cites W2168860802 @default.
- W2071063243 cites W2182932938 @default.
- W2071063243 cites W2235036220 @default.
- W2071063243 cites W2247775862 @default.
- W2071063243 cites W2308288198 @default.
- W2071063243 cites W2471272448 @default.
- W2071063243 cites W2998248225 @default.
- W2071063243 cites W3136690459 @default.
- W2071063243 cites W3139295485 @default.
- W2071063243 cites W426092920 @default.
- W2071063243 cites W984102887 @default.
- W2071063243 cites W2148265562 @default.
- W2071063243 doi "https://doi.org/10.1145/1964921.1964988" @default.
- W2071063243 hasPublicationYear "2011" @default.
- W2071063243 type Work @default.
- W2071063243 sameAs 2071063243 @default.
- W2071063243 citedByCount "37" @default.
- W2071063243 countsByYear W20710632432012 @default.
- W2071063243 countsByYear W20710632432013 @default.
- W2071063243 countsByYear W20710632432014 @default.
- W2071063243 countsByYear W20710632432015 @default.
- W2071063243 countsByYear W20710632432016 @default.
- W2071063243 countsByYear W20710632432017 @default.
- W2071063243 countsByYear W20710632432018 @default.
- W2071063243 countsByYear W20710632432019 @default.
- W2071063243 countsByYear W20710632432020 @default.
- W2071063243 countsByYear W20710632432021 @default.
- W2071063243 countsByYear W20710632432022 @default.
- W2071063243 countsByYear W20710632432023 @default.
- W2071063243 crossrefType "proceedings-article" @default.
- W2071063243 hasAuthorship W2071063243A5028216970 @default.
- W2071063243 hasAuthorship W2071063243A5042859241 @default.
- W2071063243 hasAuthorship W2071063243A5061663420 @default.
- W2071063243 hasAuthorship W2071063243A5077094895 @default.
- W2071063243 hasConcept C110384440 @default.
- W2071063243 hasConcept C115961682 @default.
- W2071063243 hasConcept C121684516 @default.
- W2071063243 hasConcept C151730666 @default.
- W2071063243 hasConcept C154945302 @default.
- W2071063243 hasConcept C173608175 @default.
- W2071063243 hasConcept C22019652 @default.
- W2071063243 hasConcept C2524010 @default.
- W2071063243 hasConcept C2776135515 @default.
- W2071063243 hasConcept C2779343474 @default.
- W2071063243 hasConcept C2780861071 @default.
- W2071063243 hasConcept C31487907 @default.
- W2071063243 hasConcept C33923547 @default.
- W2071063243 hasConcept C3826847 @default.
- W2071063243 hasConcept C41008148 @default.
- W2071063243 hasConcept C50644808 @default.
- W2071063243 hasConcept C86803240 @default.
- W2071063243 hasConceptScore W2071063243C110384440 @default.
- W2071063243 hasConceptScore W2071063243C115961682 @default.