Matches in SemOpenAlex for { <https://semopenalex.org/work/W2071072564> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2071072564 abstract "P2P applications supposedly constitute a substantial proportion of today's Internet traffic. The ability to accurately identify different P2P applications in internet traffic is important to a broad range of network operations including application-specific traffic engineering, capacity planning, resource provisioning, service differentiation, etc. However, current P2P applications use several obfuscation techniques, including dynamic port numbers, port hopping, and encrypted payloads. As P2P applications continue to evolve, robust and effective methods are needed for identification of P2P applications. It is general practice to reduce the cost of classification by reducing the number of features, utilizing some feature selection algorithm. But such algorithms are highly data-dependent and do not yield good result when tried upon other data set. In this paper, we propose an optimized set of features and compare five supervised ML algorithms for identification of the P2P traffic. It is found that NBTree outperforms other ML algorithms with 96.6% precision and 99.7% recall, when they are trained and tested on the same data set. As far as training time is concerned, BayesNet is the best with precision and recall very close to that of NBTree." @default.
- W2071072564 created "2016-06-24" @default.
- W2071072564 creator A5039040966 @default.
- W2071072564 creator A5051327291 @default.
- W2071072564 date "2012-05-01" @default.
- W2071072564 modified "2023-09-23" @default.
- W2071072564 title "Feature Optimization and Performance Evaluation of Machine Learning Algorithms for Identification of P2P Traffic" @default.
- W2071072564 cites W1521553548 @default.
- W2071072564 cites W1524496078 @default.
- W2071072564 cites W1559060276 @default.
- W2071072564 cites W1610100923 @default.
- W2071072564 cites W1997487781 @default.
- W2071072564 cites W2027664152 @default.
- W2071072564 cites W2040884411 @default.
- W2071072564 cites W2041855183 @default.
- W2071072564 cites W2073089243 @default.
- W2071072564 cites W2112219590 @default.
- W2071072564 cites W2114048520 @default.
- W2071072564 cites W2144098589 @default.
- W2071072564 doi "https://doi.org/10.4304/jait.3.2.107-114" @default.
- W2071072564 hasPublicationYear "2012" @default.
- W2071072564 type Work @default.
- W2071072564 sameAs 2071072564 @default.
- W2071072564 citedByCount "3" @default.
- W2071072564 countsByYear W20710725642021 @default.
- W2071072564 countsByYear W20710725642022 @default.
- W2071072564 crossrefType "journal-article" @default.
- W2071072564 hasAuthorship W2071072564A5039040966 @default.
- W2071072564 hasAuthorship W2071072564A5051327291 @default.
- W2071072564 hasBestOaLocation W20710725641 @default.
- W2071072564 hasConcept C11413529 @default.
- W2071072564 hasConcept C116834253 @default.
- W2071072564 hasConcept C119857082 @default.
- W2071072564 hasConcept C126255220 @default.
- W2071072564 hasConcept C138885662 @default.
- W2071072564 hasConcept C153180895 @default.
- W2071072564 hasConcept C154945302 @default.
- W2071072564 hasConcept C2776401178 @default.
- W2071072564 hasConcept C2987595161 @default.
- W2071072564 hasConcept C33923547 @default.
- W2071072564 hasConcept C41008148 @default.
- W2071072564 hasConcept C41895202 @default.
- W2071072564 hasConcept C59822182 @default.
- W2071072564 hasConcept C86803240 @default.
- W2071072564 hasConceptScore W2071072564C11413529 @default.
- W2071072564 hasConceptScore W2071072564C116834253 @default.
- W2071072564 hasConceptScore W2071072564C119857082 @default.
- W2071072564 hasConceptScore W2071072564C126255220 @default.
- W2071072564 hasConceptScore W2071072564C138885662 @default.
- W2071072564 hasConceptScore W2071072564C153180895 @default.
- W2071072564 hasConceptScore W2071072564C154945302 @default.
- W2071072564 hasConceptScore W2071072564C2776401178 @default.
- W2071072564 hasConceptScore W2071072564C2987595161 @default.
- W2071072564 hasConceptScore W2071072564C33923547 @default.
- W2071072564 hasConceptScore W2071072564C41008148 @default.
- W2071072564 hasConceptScore W2071072564C41895202 @default.
- W2071072564 hasConceptScore W2071072564C59822182 @default.
- W2071072564 hasConceptScore W2071072564C86803240 @default.
- W2071072564 hasIssue "2" @default.
- W2071072564 hasLocation W20710725641 @default.
- W2071072564 hasOpenAccess W2071072564 @default.
- W2071072564 hasPrimaryLocation W20710725641 @default.
- W2071072564 hasRelatedWork W1971623867 @default.
- W2071072564 hasRelatedWork W2016461833 @default.
- W2071072564 hasRelatedWork W2052253960 @default.
- W2071072564 hasRelatedWork W2147802381 @default.
- W2071072564 hasRelatedWork W2382607599 @default.
- W2071072564 hasRelatedWork W2546942002 @default.
- W2071072564 hasRelatedWork W2554403468 @default.
- W2071072564 hasRelatedWork W2760085659 @default.
- W2071072564 hasRelatedWork W2929240682 @default.
- W2071072564 hasRelatedWork W4225307033 @default.
- W2071072564 hasVolume "3" @default.
- W2071072564 isParatext "false" @default.
- W2071072564 isRetracted "false" @default.
- W2071072564 magId "2071072564" @default.
- W2071072564 workType "article" @default.