Matches in SemOpenAlex for { <https://semopenalex.org/work/W2071222832> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2071222832 abstract "With the rapid development of E-commerce, more and more online reviews for products and services are created, which form an important source of information for both sellers and customers. Research on sentiment and opinion mining for online review analysis has attracted increasingly more attention because such study helps leverage information from online reviews for potential economic impact. In this paper, we apply sentiment analysis and machine learning methods to study the relationship between the online reviews for a movie and the movie's box office revenue performance. We show that a simplified version of the sentiment-aware autoregressive model proposed in [5] can produce very good accuracy for predicting the box office sale using online review data. Our simplified version considers only positive and negative sentiments, and uses a very simple set of features with 14 affective key words for representing the sentiments in a review. In this way we obtain a simpler model which could be more efficient to train and use. Experiments indicate that the autoregressive model using both review sentiment data and the previous days' sale data results in higher accuracy than just using previous sale data alone. In addition, we create a classification model using Naïve Bayes Classifier for predicting the trend of the box office revenue from the review sentiment data." @default.
- W2071222832 created "2016-06-24" @default.
- W2071222832 creator A5042560788 @default.
- W2071222832 creator A5048839666 @default.
- W2071222832 date "2013-12-01" @default.
- W2071222832 modified "2023-10-03" @default.
- W2071222832 title "Predicting movie sales revenue using online reviews" @default.
- W2071222832 cites W2021093430 @default.
- W2071222832 cites W2067505258 @default.
- W2071222832 cites W2079770638 @default.
- W2071222832 cites W2163455955 @default.
- W2071222832 cites W2166706824 @default.
- W2071222832 cites W4205184193 @default.
- W2071222832 cites W4233135949 @default.
- W2071222832 doi "https://doi.org/10.1109/grc.2013.6740443" @default.
- W2071222832 hasPublicationYear "2013" @default.
- W2071222832 type Work @default.
- W2071222832 sameAs 2071222832 @default.
- W2071222832 citedByCount "19" @default.
- W2071222832 countsByYear W20712228322015 @default.
- W2071222832 countsByYear W20712228322016 @default.
- W2071222832 countsByYear W20712228322017 @default.
- W2071222832 countsByYear W20712228322018 @default.
- W2071222832 countsByYear W20712228322019 @default.
- W2071222832 countsByYear W20712228322020 @default.
- W2071222832 countsByYear W20712228322022 @default.
- W2071222832 countsByYear W20712228322023 @default.
- W2071222832 crossrefType "proceedings-article" @default.
- W2071222832 hasAuthorship W2071222832A5042560788 @default.
- W2071222832 hasAuthorship W2071222832A5048839666 @default.
- W2071222832 hasConcept C10138342 @default.
- W2071222832 hasConcept C112698675 @default.
- W2071222832 hasConcept C119857082 @default.
- W2071222832 hasConcept C12267149 @default.
- W2071222832 hasConcept C124101348 @default.
- W2071222832 hasConcept C144133560 @default.
- W2071222832 hasConcept C149782125 @default.
- W2071222832 hasConcept C153083717 @default.
- W2071222832 hasConcept C154945302 @default.
- W2071222832 hasConcept C159877910 @default.
- W2071222832 hasConcept C162324750 @default.
- W2071222832 hasConcept C195487862 @default.
- W2071222832 hasConcept C2522767166 @default.
- W2071222832 hasConcept C2992750335 @default.
- W2071222832 hasConcept C41008148 @default.
- W2071222832 hasConcept C52001869 @default.
- W2071222832 hasConcept C66402592 @default.
- W2071222832 hasConcept C95623464 @default.
- W2071222832 hasConceptScore W2071222832C10138342 @default.
- W2071222832 hasConceptScore W2071222832C112698675 @default.
- W2071222832 hasConceptScore W2071222832C119857082 @default.
- W2071222832 hasConceptScore W2071222832C12267149 @default.
- W2071222832 hasConceptScore W2071222832C124101348 @default.
- W2071222832 hasConceptScore W2071222832C144133560 @default.
- W2071222832 hasConceptScore W2071222832C149782125 @default.
- W2071222832 hasConceptScore W2071222832C153083717 @default.
- W2071222832 hasConceptScore W2071222832C154945302 @default.
- W2071222832 hasConceptScore W2071222832C159877910 @default.
- W2071222832 hasConceptScore W2071222832C162324750 @default.
- W2071222832 hasConceptScore W2071222832C195487862 @default.
- W2071222832 hasConceptScore W2071222832C2522767166 @default.
- W2071222832 hasConceptScore W2071222832C2992750335 @default.
- W2071222832 hasConceptScore W2071222832C41008148 @default.
- W2071222832 hasConceptScore W2071222832C52001869 @default.
- W2071222832 hasConceptScore W2071222832C66402592 @default.
- W2071222832 hasConceptScore W2071222832C95623464 @default.
- W2071222832 hasLocation W20712228321 @default.
- W2071222832 hasOpenAccess W2071222832 @default.
- W2071222832 hasPrimaryLocation W20712228321 @default.
- W2071222832 hasRelatedWork W2071222832 @default.
- W2071222832 hasRelatedWork W2741836081 @default.
- W2071222832 hasRelatedWork W2961085424 @default.
- W2071222832 hasRelatedWork W3213901898 @default.
- W2071222832 hasRelatedWork W4205958290 @default.
- W2071222832 hasRelatedWork W4211165872 @default.
- W2071222832 hasRelatedWork W4281608370 @default.
- W2071222832 hasRelatedWork W4327531511 @default.
- W2071222832 hasRelatedWork W4327831767 @default.
- W2071222832 hasRelatedWork W4362613237 @default.
- W2071222832 isParatext "false" @default.
- W2071222832 isRetracted "false" @default.
- W2071222832 magId "2071222832" @default.
- W2071222832 workType "article" @default.