Matches in SemOpenAlex for { <https://semopenalex.org/work/W2071271191> ?p ?o ?g. }
- W2071271191 abstract "Abstract Gas hydrates in reservoirs are generally not in thermodynamic equilibrium and there may be several competing phase transitions involving hydrate. Formation of carbon dioxide hydrates during aquifer storage of carbon dioxide involves roughly 10% volume increase compared to groundwater. Dissociation of hydrate towards under saturated fluid phases involves the same level of contraction. Hydrate phase transitions are generally fast (scales of seconds) compared to mineral dissolution and precipitation and it is unlikely that a time shifted explicit coupling to geo mechanical analysis will be able to capture the appropriate dynamic couplings between flow and changes in stress. The need for geo mechanical integrity of the storage site therefore requires a reservoir simulator with an implicit solution of mass flow, heat flow and geo mechanics. And since carbon dioxide involved in hydrate is also involved in different geochemical reactions we propose a scheme where all possible hydrate formation (on water/carbon dioxide interface, from water solution and from carbon dioxide adsorbed on mineral surfaces) as well as all different possible dissociations are treated as pseudo reactions but with kinetics derived from advanced theoretical modeling. The main tools for generating these models have been phase field theory simulations, with thermodynamic properties derived from molecular modeling. The detailed results from these types of simulations provides information on the relative impact of mass transport, heat transport and thermodynamics of the phase transition which enable qualified simplifications for implementation into RCB. The primary step was to study the effect of hydrate growth or dissociation with a certain kinetic rate on the mechanical properties of the reservoir. Details of the simulator, and numerical algorithms, are discussed and relevant examples are shown. Introduction Natural gas hydrate in the reservoir is continuously attracting the attention of more researchers around the world and the reason is its importance from different aspects ranging from a potential energy resource to environmental threat. Hydrate can occur in sediments below the oceanic floor or in the permafrost wherever the thermodynamic conditions are suitable and water and guest molecules are available. Investigations show that there are huge resources of natural gas hydrate in the earth which due to the high volumetric concentration of methane gas per hydrate volume is considered as a substantial energy resource. Besides, methane combustion releases less CO2 per unit energy release compared to both coal and oil which means a cleaner fuel from environmental point of view. On the other hand methane can be over twenty times more aggressive than CO2 in trapping the heat in the atmosphere and in case of leakage from sediments it can affect the marine life and the climate substantially. There are several scenarios for methane production from natural gas hydrate reservoirs. Depressurization method in which hydrate stability condition is disturbed by pressure reduction according to the water-gas-hydrate equilibrium curve of figure 1 resulting in hydrate dissociation and release of methane. It is currently considered as the most feasible process considering expenses and production rate and has been investigated by many research groups through simulation studies. Thermal stimulation is another method which is based on moving out from stability region by temperature increase. It is considered to be costly due to huge amount of energy waste to the surroundings. The third method is to use inhibitors such as methanol or brine to shift the equilibrium curve and dissociate hydrate according to figure 2 which is also costly. The final method is injection of CO2 into the methane hydrate reservoirs. CO2-hydrate is more stable than Ch4-hydrate. Therefore CO2-hydrate formation will provide the necessary heat to dissociate methane hydrate and it can be considered both as a natural gas production method and a CO2 sequestration process (Graue et al., 2008)." @default.
- W2071271191 created "2016-06-24" @default.
- W2071271191 creator A5015954040 @default.
- W2071271191 creator A5021964812 @default.
- W2071271191 creator A5061720787 @default.
- W2071271191 creator A5082375727 @default.
- W2071271191 date "2011-11-15" @default.
- W2071271191 modified "2023-09-23" @default.
- W2071271191 title "Simulation of Hydrate Dynamics in Reservoirs" @default.
- W2071271191 cites W1155496432 @default.
- W2071271191 cites W1483165605 @default.
- W2071271191 cites W1514524248 @default.
- W2071271191 cites W1641488713 @default.
- W2071271191 cites W1837274356 @default.
- W2071271191 cites W1966082139 @default.
- W2071271191 cites W1970810694 @default.
- W2071271191 cites W1978914265 @default.
- W2071271191 cites W1980050567 @default.
- W2071271191 cites W1990983603 @default.
- W2071271191 cites W1995131886 @default.
- W2071271191 cites W1995447502 @default.
- W2071271191 cites W1995876178 @default.
- W2071271191 cites W1998942606 @default.
- W2071271191 cites W2001118870 @default.
- W2071271191 cites W2002461919 @default.
- W2071271191 cites W2005292337 @default.
- W2071271191 cites W2007688931 @default.
- W2071271191 cites W2011903995 @default.
- W2071271191 cites W2021240251 @default.
- W2071271191 cites W2021700654 @default.
- W2071271191 cites W2026176417 @default.
- W2071271191 cites W2029784093 @default.
- W2071271191 cites W2034618697 @default.
- W2071271191 cites W2040910765 @default.
- W2071271191 cites W2044166410 @default.
- W2071271191 cites W2048872905 @default.
- W2071271191 cites W2057966768 @default.
- W2071271191 cites W2058969526 @default.
- W2071271191 cites W2061432854 @default.
- W2071271191 cites W2062983950 @default.
- W2071271191 cites W2065967806 @default.
- W2071271191 cites W2068162320 @default.
- W2071271191 cites W2072344710 @default.
- W2071271191 cites W2078916507 @default.
- W2071271191 cites W2089322239 @default.
- W2071271191 cites W2091610817 @default.
- W2071271191 cites W2092823186 @default.
- W2071271191 cites W2117006714 @default.
- W2071271191 cites W2121123843 @default.
- W2071271191 cites W2140618636 @default.
- W2071271191 cites W2149490601 @default.
- W2071271191 cites W2162604832 @default.
- W2071271191 cites W2339992393 @default.
- W2071271191 cites W2599649573 @default.
- W2071271191 cites W1974038967 @default.
- W2071271191 cites W3022849253 @default.
- W2071271191 doi "https://doi.org/10.2523/iptc-14609-ms" @default.
- W2071271191 hasPublicationYear "2011" @default.
- W2071271191 type Work @default.
- W2071271191 sameAs 2071271191 @default.
- W2071271191 citedByCount "0" @default.
- W2071271191 crossrefType "proceedings-article" @default.
- W2071271191 hasAuthorship W2071271191A5015954040 @default.
- W2071271191 hasAuthorship W2071271191A5021964812 @default.
- W2071271191 hasAuthorship W2071271191A5061720787 @default.
- W2071271191 hasAuthorship W2071271191A5082375727 @default.
- W2071271191 hasBestOaLocation W20712711912 @default.
- W2071271191 hasConcept C100402318 @default.
- W2071271191 hasConcept C102931765 @default.
- W2071271191 hasConcept C121332964 @default.
- W2071271191 hasConcept C147789679 @default.
- W2071271191 hasConcept C178790620 @default.
- W2071271191 hasConcept C185592680 @default.
- W2071271191 hasConcept C2781060337 @default.
- W2071271191 hasConcept C530467964 @default.
- W2071271191 hasConcept C88380143 @default.
- W2071271191 hasConcept C97355855 @default.
- W2071271191 hasConceptScore W2071271191C100402318 @default.
- W2071271191 hasConceptScore W2071271191C102931765 @default.
- W2071271191 hasConceptScore W2071271191C121332964 @default.
- W2071271191 hasConceptScore W2071271191C147789679 @default.
- W2071271191 hasConceptScore W2071271191C178790620 @default.
- W2071271191 hasConceptScore W2071271191C185592680 @default.
- W2071271191 hasConceptScore W2071271191C2781060337 @default.
- W2071271191 hasConceptScore W2071271191C530467964 @default.
- W2071271191 hasConceptScore W2071271191C88380143 @default.
- W2071271191 hasConceptScore W2071271191C97355855 @default.
- W2071271191 hasLocation W20712711911 @default.
- W2071271191 hasLocation W20712711912 @default.
- W2071271191 hasOpenAccess W2071271191 @default.
- W2071271191 hasPrimaryLocation W20712711911 @default.
- W2071271191 hasRelatedWork W1590088557 @default.
- W2071271191 hasRelatedWork W1985359449 @default.
- W2071271191 hasRelatedWork W2026312353 @default.
- W2071271191 hasRelatedWork W2042179760 @default.
- W2071271191 hasRelatedWork W2062919492 @default.
- W2071271191 hasRelatedWork W2093186376 @default.
- W2071271191 hasRelatedWork W2338431536 @default.
- W2071271191 hasRelatedWork W3137377132 @default.
- W2071271191 hasRelatedWork W3215004871 @default.