Matches in SemOpenAlex for { <https://semopenalex.org/work/W2071341224> ?p ?o ?g. }
- W2071341224 endingPage "88" @default.
- W2071341224 startingPage "64" @default.
- W2071341224 abstract "The Mediterranean Basin is highly heterogeneous with regard to its climatic and oceanographic properties. The appropriate approach for simulating the transport and transformations of Hg in the water compartment requires the use of a hydrodynamic model with additional modules for transport–dispersion and biogeochemistry. In this work, the PCFLOW3D model was upgraded with a biogeochemical module and used for simulation of mercury transport and transformation processes in the Mediterranean. The circulation for the four seasons due to wind, thermohaline forcing and inflow momentum of the main rivers and through the straits was calculated. The results were compared with measurements and the results of another model (POM — Princeton Ocean Model). An acceptable agreement was achieved. The seasonally averaged velocity fields obtained were used to simulate transport and dispersion of mercury. A new biogeochemical module dealing with the different mercury species: gaseous elemental (Hg0), divalent (Hg2+), and mono-methyl mercury (MMHg) in dissolved form and bound to particulate matter and plankton was introduced. Exchange of mercury at the boundaries (bottom sediment/water and water/atmosphere) and transformation processes such as methylation, demethylation, reduction and oxidation were taken into account. The transformation rates between the mercury species were described using simple equations, and thus the time and space variable reaction coefficients should be determined from in-situ measurements. Instead, machine-learning tools and classical statistical methods were used to connect the measured sets of geophysical/environmental parameters and concentrations of different Hg species. The provisional annual Hg mass balance established for the Mediterranean showed that exchange with the atmosphere is the most important source/sink of mercury for the water compartment. Therefore, the model was further upgraded with a gas exchange module for Hg0. To improve the results of the simulations the PCFLOW3D aquatic model was further linked to the RAMS–Hg atmospheric model which provided real-time meteorological data, deposition and concentrations of mercury in the atmosphere. Simulations with the integrated modelling tool were performed and the results were compared to the measurements. Acceptable agreement of the average concentrations down the water column for both total mercury (HgT) and elemental mercury (Hg0) was achieved. Agreement of Hg0 concentrations near the surface was good; thus exchange with the atmosphere can be simulated with relatively high reliability. Agreement of simulated MMHg concentrations with measurements was not satisfactory, which is probably due to poor understanding of the processes of MMHg formation and its dependence on environmental factors, which have, so far, not been taken into account in the modelling. In view of the satisfactory modelling results obtained for HgT and Hg0, a simulation of management scenarios, particularly the policy target (PoT) scenarios for 2010 and 2020, was performed. The results of these simulations were further used to establish the mass balance of HgT in the Mediterranean Sea." @default.
- W2071341224 created "2016-06-24" @default.
- W2071341224 creator A5007684429 @default.
- W2071341224 creator A5020768251 @default.
- W2071341224 creator A5036136774 @default.
- W2071341224 creator A5041266070 @default.
- W2071341224 creator A5054243528 @default.
- W2071341224 creator A5059148407 @default.
- W2071341224 creator A5063451239 @default.
- W2071341224 creator A5089966969 @default.
- W2071341224 date "2007-10-01" @default.
- W2071341224 modified "2023-10-17" @default.
- W2071341224 title "Modelling of mercury transport and transformations in the water compartment of the Mediterranean Sea" @default.
- W2071341224 cites W1970833432 @default.
- W2071341224 cites W1976220820 @default.
- W2071341224 cites W1982616635 @default.
- W2071341224 cites W1984525713 @default.
- W2071341224 cites W1984714498 @default.
- W2071341224 cites W1991998303 @default.
- W2071341224 cites W199889995 @default.
- W2071341224 cites W2002375028 @default.
- W2071341224 cites W2005159302 @default.
- W2071341224 cites W2010899257 @default.
- W2071341224 cites W2011535552 @default.
- W2071341224 cites W2012766759 @default.
- W2071341224 cites W2015387649 @default.
- W2071341224 cites W2017457602 @default.
- W2071341224 cites W2022592790 @default.
- W2071341224 cites W2027600105 @default.
- W2071341224 cites W2030489471 @default.
- W2071341224 cites W2030600854 @default.
- W2071341224 cites W2031719307 @default.
- W2071341224 cites W2038742869 @default.
- W2071341224 cites W2040205527 @default.
- W2071341224 cites W2041463319 @default.
- W2071341224 cites W2046938224 @default.
- W2071341224 cites W2047052777 @default.
- W2071341224 cites W2047547638 @default.
- W2071341224 cites W2056704927 @default.
- W2071341224 cites W2062595876 @default.
- W2071341224 cites W2064475241 @default.
- W2071341224 cites W2067339224 @default.
- W2071341224 cites W2073828634 @default.
- W2071341224 cites W2080719402 @default.
- W2071341224 cites W2089713225 @default.
- W2071341224 cites W2091083575 @default.
- W2071341224 cites W2093667592 @default.
- W2071341224 cites W2094300388 @default.
- W2071341224 cites W2094605144 @default.
- W2071341224 cites W2098920641 @default.
- W2071341224 cites W2108634669 @default.
- W2071341224 cites W2114318860 @default.
- W2071341224 cites W2127466807 @default.
- W2071341224 cites W2130384865 @default.
- W2071341224 cites W90223316 @default.
- W2071341224 doi "https://doi.org/10.1016/j.marchem.2007.02.007" @default.
- W2071341224 hasPublicationYear "2007" @default.
- W2071341224 type Work @default.
- W2071341224 sameAs 2071341224 @default.
- W2071341224 citedByCount "32" @default.
- W2071341224 countsByYear W20713412242012 @default.
- W2071341224 countsByYear W20713412242013 @default.
- W2071341224 countsByYear W20713412242014 @default.
- W2071341224 countsByYear W20713412242015 @default.
- W2071341224 countsByYear W20713412242016 @default.
- W2071341224 countsByYear W20713412242017 @default.
- W2071341224 countsByYear W20713412242018 @default.
- W2071341224 countsByYear W20713412242019 @default.
- W2071341224 countsByYear W20713412242020 @default.
- W2071341224 countsByYear W20713412242022 @default.
- W2071341224 crossrefType "journal-article" @default.
- W2071341224 hasAuthorship W2071341224A5007684429 @default.
- W2071341224 hasAuthorship W2071341224A5020768251 @default.
- W2071341224 hasAuthorship W2071341224A5036136774 @default.
- W2071341224 hasAuthorship W2071341224A5041266070 @default.
- W2071341224 hasAuthorship W2071341224A5054243528 @default.
- W2071341224 hasAuthorship W2071341224A5059148407 @default.
- W2071341224 hasAuthorship W2071341224A5063451239 @default.
- W2071341224 hasAuthorship W2071341224A5089966969 @default.
- W2071341224 hasConcept C107872376 @default.
- W2071341224 hasConcept C108469399 @default.
- W2071341224 hasConcept C111368507 @default.
- W2071341224 hasConcept C122846477 @default.
- W2071341224 hasConcept C127313418 @default.
- W2071341224 hasConcept C130309983 @default.
- W2071341224 hasConcept C140302290 @default.
- W2071341224 hasConcept C185592680 @default.
- W2071341224 hasConcept C18903297 @default.
- W2071341224 hasConcept C199360897 @default.
- W2071341224 hasConcept C2777777548 @default.
- W2071341224 hasConcept C2779043415 @default.
- W2071341224 hasConcept C39432304 @default.
- W2071341224 hasConcept C41008148 @default.
- W2071341224 hasConcept C4646841 @default.
- W2071341224 hasConcept C71915725 @default.
- W2071341224 hasConcept C77942228 @default.
- W2071341224 hasConcept C86803240 @default.
- W2071341224 hasConcept C91586092 @default.