Matches in SemOpenAlex for { <https://semopenalex.org/work/W2071451769> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2071451769 abstract "In the past decades, there has been an implicit explosion of absorption in Artificial Intelligence (AI) field. AI supplies robust and flexible means for acquiring solutions to a diversity of problems that often cannot be solved by other, more traditional and orthodox methods. Nowadays, its use is increasing rapidly in many sectors of complicated practical problems. Meanwhile, electrical energy demand prediction is one of the important concerns of energy systems so development of intelligent prediction methods and algorithms for performing accurate predictions is essential. Various techniques have been proposed for electrical energy demand prediction over different time intervals of short term, medium term and long term. This study presents an intelligent hybrid approach based on Particle Swarm Optimization (PSO) and Noise filtering technique (which is one of Data Mining and Data Analysis concepts) for modeling and predicting long term electrical energy demand with high accuracy. At the first stage the hybrid approach applies noise filtering technique on raw data that consists of influential socio-economic factors affecting electricity demand, and as its consequence the raw data will be cleaned and smoothed. At the next stage it performs feature selection technique to determine the most influential factors and eliminate low impact factors. Subsequently selected filtered factors will be fed into PSO in order to build the prediction model (Filtered-PSO). For the purpose of investigating and validating influence of noise filtering on improvement of PSO, it compares results of the hybrid approach with Simple-PSO model which is built using raw data. It carries out the comparisons by means of paired t-test to check if the improvement is statistically significant or not. Results show that the Filtered-PSO model significantly outperforms Simple-PSO and we may consider noise filtering as an effective concept of data mining to be integrated with intelligent approaches such as PSO in order to improve accuracy of electrical energy demand predictions." @default.
- W2071451769 created "2016-06-24" @default.
- W2071451769 creator A5059912641 @default.
- W2071451769 creator A5060115312 @default.
- W2071451769 creator A5065121508 @default.
- W2071451769 date "2010-02-01" @default.
- W2071451769 modified "2023-09-26" @default.
- W2071451769 title "Prediction of electrical energy demand by hybridization of Particle Swarm Optimization and Noise filtering" @default.
- W2071451769 cites W1541843935 @default.
- W2071451769 cites W1969445513 @default.
- W2071451769 cites W1970636934 @default.
- W2071451769 cites W1988164075 @default.
- W2071451769 cites W1990166396 @default.
- W2071451769 cites W2021252908 @default.
- W2071451769 cites W2047785054 @default.
- W2071451769 cites W2058791286 @default.
- W2071451769 cites W2081381307 @default.
- W2071451769 cites W2087262384 @default.
- W2071451769 cites W2111755801 @default.
- W2071451769 cites W2152195021 @default.
- W2071451769 cites W2164353564 @default.
- W2071451769 cites W3123622325 @default.
- W2071451769 doi "https://doi.org/10.1109/iccae.2010.5451227" @default.
- W2071451769 hasPublicationYear "2010" @default.
- W2071451769 type Work @default.
- W2071451769 sameAs 2071451769 @default.
- W2071451769 citedByCount "3" @default.
- W2071451769 countsByYear W20714517692014 @default.
- W2071451769 countsByYear W20714517692021 @default.
- W2071451769 crossrefType "proceedings-article" @default.
- W2071451769 hasAuthorship W2071451769A5059912641 @default.
- W2071451769 hasAuthorship W2071451769A5060115312 @default.
- W2071451769 hasAuthorship W2071451769A5065121508 @default.
- W2071451769 hasConcept C105795698 @default.
- W2071451769 hasConcept C115961682 @default.
- W2071451769 hasConcept C119599485 @default.
- W2071451769 hasConcept C119857082 @default.
- W2071451769 hasConcept C121332964 @default.
- W2071451769 hasConcept C124101348 @default.
- W2071451769 hasConcept C126255220 @default.
- W2071451769 hasConcept C127413603 @default.
- W2071451769 hasConcept C132964779 @default.
- W2071451769 hasConcept C154945302 @default.
- W2071451769 hasConcept C186370098 @default.
- W2071451769 hasConcept C199360897 @default.
- W2071451769 hasConcept C202444582 @default.
- W2071451769 hasConcept C206658404 @default.
- W2071451769 hasConcept C2779438525 @default.
- W2071451769 hasConcept C33923547 @default.
- W2071451769 hasConcept C41008148 @default.
- W2071451769 hasConcept C61797465 @default.
- W2071451769 hasConcept C62520636 @default.
- W2071451769 hasConcept C85617194 @default.
- W2071451769 hasConcept C9652623 @default.
- W2071451769 hasConcept C99498987 @default.
- W2071451769 hasConceptScore W2071451769C105795698 @default.
- W2071451769 hasConceptScore W2071451769C115961682 @default.
- W2071451769 hasConceptScore W2071451769C119599485 @default.
- W2071451769 hasConceptScore W2071451769C119857082 @default.
- W2071451769 hasConceptScore W2071451769C121332964 @default.
- W2071451769 hasConceptScore W2071451769C124101348 @default.
- W2071451769 hasConceptScore W2071451769C126255220 @default.
- W2071451769 hasConceptScore W2071451769C127413603 @default.
- W2071451769 hasConceptScore W2071451769C132964779 @default.
- W2071451769 hasConceptScore W2071451769C154945302 @default.
- W2071451769 hasConceptScore W2071451769C186370098 @default.
- W2071451769 hasConceptScore W2071451769C199360897 @default.
- W2071451769 hasConceptScore W2071451769C202444582 @default.
- W2071451769 hasConceptScore W2071451769C206658404 @default.
- W2071451769 hasConceptScore W2071451769C2779438525 @default.
- W2071451769 hasConceptScore W2071451769C33923547 @default.
- W2071451769 hasConceptScore W2071451769C41008148 @default.
- W2071451769 hasConceptScore W2071451769C61797465 @default.
- W2071451769 hasConceptScore W2071451769C62520636 @default.
- W2071451769 hasConceptScore W2071451769C85617194 @default.
- W2071451769 hasConceptScore W2071451769C9652623 @default.
- W2071451769 hasConceptScore W2071451769C99498987 @default.
- W2071451769 hasLocation W20714517691 @default.
- W2071451769 hasOpenAccess W2071451769 @default.
- W2071451769 hasPrimaryLocation W20714517691 @default.
- W2071451769 hasRelatedWork W2894747149 @default.
- W2071451769 hasRelatedWork W2996935211 @default.
- W2071451769 hasRelatedWork W3215235441 @default.
- W2071451769 hasRelatedWork W4246751904 @default.
- W2071451769 hasRelatedWork W4253595829 @default.
- W2071451769 hasRelatedWork W4288754364 @default.
- W2071451769 hasRelatedWork W4297725807 @default.
- W2071451769 hasRelatedWork W4306175410 @default.
- W2071451769 hasRelatedWork W4308734192 @default.
- W2071451769 hasRelatedWork W4312831135 @default.
- W2071451769 isParatext "false" @default.
- W2071451769 isRetracted "false" @default.
- W2071451769 magId "2071451769" @default.
- W2071451769 workType "article" @default.