Matches in SemOpenAlex for { <https://semopenalex.org/work/W2071465274> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2071465274 endingPage "125" @default.
- W2071465274 startingPage "111" @default.
- W2071465274 abstract "Error budgets of process models allow us to partition the uncertainty (estimation error) in model projections caused by propagation of uncertainty in model inputs. Orthogonal polynomials, which are often employed to empirically represent unknown and possibly very complex relationships, have been applied to the development of error budgets by fitting the variance of the projection as a function of the standard errors of the parameter estimates of the process model inputs. Data generation approaches to fit those polynomials have involved some type of factorial design. However, that strategy may become unworkable for process models with many model inputs. In this paper, we propose an efficient method for building error budgets to not only overcome the limitations of factorial arrangements, but also to approximate the results obtainable through those designs. The proposed data generation scheme consists of: (a) repeatedly sampling random, equally-spaced, and equally-probable levels of standard error of the model input parameter estimates to characterize the level of error of their probability distributions; and (b) for each set of standard errors, conducting a number of Monte Carlo runs by sampling random values of input parameter estimates from each of those distributions to obtain projections of the process model and thus estimate the variance of the projection. The variance of the projection is then regressed on the orthogonally-transformed values of the input standard errors. The terms of the orthogonal polynomial are then ranked in decreasing order with respect to their explanatory importance in the function. The characteristics of this sampling scheme are analyzed through intensive supercomputer simulations under different combinations of number of model inputs and sample sizes. An example is conducted for a process forest growth model based on the pipe model theory and the self-thinning rule applied to a stand of red pine (Pinus resinosa Ait.) growing in the Great Lakes region of North America. The error budget resulting from this example closely resembles the error budget obtained by another study conducted for the same process model and forest stand using a fractional factorial design. It is concluded that the method proposed here provides an efficient strategy for building error budgets for process models with many model inputs." @default.
- W2071465274 created "2016-06-24" @default.
- W2071465274 creator A5007293499 @default.
- W2071465274 creator A5057600026 @default.
- W2071465274 creator A5084322913 @default.
- W2071465274 date "2000-12-01" @default.
- W2071465274 modified "2023-09-30" @default.
- W2071465274 title "Efficient approximation for building error budgets for process models" @default.
- W2071465274 cites W2013141730 @default.
- W2071465274 cites W2022082457 @default.
- W2071465274 cites W2031650303 @default.
- W2071465274 cites W2032436898 @default.
- W2071465274 cites W2051142693 @default.
- W2071465274 cites W2079708801 @default.
- W2071465274 cites W2151321701 @default.
- W2071465274 cites W2400231698 @default.
- W2071465274 cites W4214506318 @default.
- W2071465274 cites W4232762653 @default.
- W2071465274 cites W4238760421 @default.
- W2071465274 cites W4248267957 @default.
- W2071465274 cites W4256156729 @default.
- W2071465274 doi "https://doi.org/10.1016/s0304-3800(00)00347-1" @default.
- W2071465274 hasPublicationYear "2000" @default.
- W2071465274 type Work @default.
- W2071465274 sameAs 2071465274 @default.
- W2071465274 citedByCount "21" @default.
- W2071465274 countsByYear W20714652742012 @default.
- W2071465274 countsByYear W20714652742013 @default.
- W2071465274 countsByYear W20714652742014 @default.
- W2071465274 countsByYear W20714652742016 @default.
- W2071465274 countsByYear W20714652742021 @default.
- W2071465274 crossrefType "journal-article" @default.
- W2071465274 hasAuthorship W2071465274A5007293499 @default.
- W2071465274 hasAuthorship W2071465274A5057600026 @default.
- W2071465274 hasAuthorship W2071465274A5084322913 @default.
- W2071465274 hasConcept C105795698 @default.
- W2071465274 hasConcept C106131492 @default.
- W2071465274 hasConcept C11413529 @default.
- W2071465274 hasConcept C121955636 @default.
- W2071465274 hasConcept C123614077 @default.
- W2071465274 hasConcept C126255220 @default.
- W2071465274 hasConcept C134306372 @default.
- W2071465274 hasConcept C14036430 @default.
- W2071465274 hasConcept C140779682 @default.
- W2071465274 hasConcept C144133560 @default.
- W2071465274 hasConcept C183763347 @default.
- W2071465274 hasConcept C18747219 @default.
- W2071465274 hasConcept C19499675 @default.
- W2071465274 hasConcept C196083921 @default.
- W2071465274 hasConcept C28826006 @default.
- W2071465274 hasConcept C31972630 @default.
- W2071465274 hasConcept C33923547 @default.
- W2071465274 hasConcept C41008148 @default.
- W2071465274 hasConcept C57493831 @default.
- W2071465274 hasConcept C78458016 @default.
- W2071465274 hasConcept C86803240 @default.
- W2071465274 hasConcept C90119067 @default.
- W2071465274 hasConceptScore W2071465274C105795698 @default.
- W2071465274 hasConceptScore W2071465274C106131492 @default.
- W2071465274 hasConceptScore W2071465274C11413529 @default.
- W2071465274 hasConceptScore W2071465274C121955636 @default.
- W2071465274 hasConceptScore W2071465274C123614077 @default.
- W2071465274 hasConceptScore W2071465274C126255220 @default.
- W2071465274 hasConceptScore W2071465274C134306372 @default.
- W2071465274 hasConceptScore W2071465274C14036430 @default.
- W2071465274 hasConceptScore W2071465274C140779682 @default.
- W2071465274 hasConceptScore W2071465274C144133560 @default.
- W2071465274 hasConceptScore W2071465274C183763347 @default.
- W2071465274 hasConceptScore W2071465274C18747219 @default.
- W2071465274 hasConceptScore W2071465274C19499675 @default.
- W2071465274 hasConceptScore W2071465274C196083921 @default.
- W2071465274 hasConceptScore W2071465274C28826006 @default.
- W2071465274 hasConceptScore W2071465274C31972630 @default.
- W2071465274 hasConceptScore W2071465274C33923547 @default.
- W2071465274 hasConceptScore W2071465274C41008148 @default.
- W2071465274 hasConceptScore W2071465274C57493831 @default.
- W2071465274 hasConceptScore W2071465274C78458016 @default.
- W2071465274 hasConceptScore W2071465274C86803240 @default.
- W2071465274 hasConceptScore W2071465274C90119067 @default.
- W2071465274 hasIssue "2-3" @default.
- W2071465274 hasLocation W20714652741 @default.
- W2071465274 hasOpenAccess W2071465274 @default.
- W2071465274 hasPrimaryLocation W20714652741 @default.
- W2071465274 hasRelatedWork W129898351 @default.
- W2071465274 hasRelatedWork W1966053485 @default.
- W2071465274 hasRelatedWork W2003759554 @default.
- W2071465274 hasRelatedWork W2020434732 @default.
- W2071465274 hasRelatedWork W2059240886 @default.
- W2071465274 hasRelatedWork W2076574508 @default.
- W2071465274 hasRelatedWork W2095531778 @default.
- W2071465274 hasRelatedWork W2141073214 @default.
- W2071465274 hasRelatedWork W3041670244 @default.
- W2071465274 hasRelatedWork W567739382 @default.
- W2071465274 hasVolume "135" @default.
- W2071465274 isParatext "false" @default.
- W2071465274 isRetracted "false" @default.
- W2071465274 magId "2071465274" @default.
- W2071465274 workType "article" @default.