Matches in SemOpenAlex for { <https://semopenalex.org/work/W2071542017> ?p ?o ?g. }
- W2071542017 endingPage "1320" @default.
- W2071542017 startingPage "1309" @default.
- W2071542017 abstract "The use of self-assembly to fabricate surface-confined adsorbed layers (adlayers) from molecular components provides a simple means of producing complex functional surfaces. The molecular self-assembly process relies on supramolecular interactions sustained by noncovalent forces such as van der Waals, electrostatic, dipole–dipole, and hydrogen bonding interactions. Researchers have exploited these noncovalent bonding motifs to construct well-defined two-dimensional (2D) architectures at the liquid–solid interface. Despite myriad examples of 2D molecular assembly, most of these early findings were serendipitous because the intermolecular interactions involved in the process are often numerous, subtle, cooperative, and multifaceted. As a consequence, the ability to tailor supramolecular patterns has evolved slowly. Insight gained from various studies over the years has contributed significantly to the knowledge of supramolecular interactions, and the stage is now set to systematically engineer the 2D supramolecular networks in a “preprogrammed” fashion.The control over 2D self-assembly of molecules has many important implications. Through appropriate manipulation of supramolecular interactions, one can “encode” the information at the molecular level via structural features such as functional groups, substitution patterns, and chiral centers which could then be retrieved, transferred, or amplified at the supramolecular level through well-defined molecular recognition processes. This ability allows for precise control over the nanoscale structure and function of patterned surfaces. A clearer understanding and effective use of these interactions could lead to the development of functional surfaces with potential applications in molecular electronics, chiral separations, sensors based on host–guest systems, and thin film materials for lubrication.In this Account, we portray our various attempts to achieve rational design of self-assembled adlayers by exploiting the aforementioned complex interactions at the liquid–solid interface. The liquid–solid interface presents a unique medium to construct flawless networks of surface confined molecules. The presence of substrate and solvent provides an additional handle for steering the self-assembly of molecules. Scanning tunneling microscopy (STM) was used for probing these molecular layers, a technique that serves not only as a visualization tool but could also be employed for active manipulation of molecules. The supramolecular systems described here are only weakly adsorbed on a substrate, which is typically highly oriented pyrolytic graphite (HOPG). Starting with fundamental studies of substrate and solvent influence on molecular self-assembly, this Account describes progressively complex aspects such as multicomponent self-assembly via 2D crystal engineering, emergence, and induction of chirality and stimulus responsive supramolecular systems." @default.
- W2071542017 created "2016-06-24" @default.
- W2071542017 creator A5005067849 @default.
- W2071542017 creator A5007478289 @default.
- W2071542017 creator A5024784714 @default.
- W2071542017 creator A5066795820 @default.
- W2071542017 creator A5068870927 @default.
- W2071542017 date "2012-05-21" @default.
- W2071542017 modified "2023-09-24" @default.
- W2071542017 title "Exploring the Complexity of Supramolecular Interactions for Patterning at the Liquid–Solid Interface" @default.
- W2071542017 cites W1965954533 @default.
- W2071542017 cites W1968732154 @default.
- W2071542017 cites W1969117583 @default.
- W2071542017 cites W1969304755 @default.
- W2071542017 cites W1988911855 @default.
- W2071542017 cites W1996192961 @default.
- W2071542017 cites W1998842335 @default.
- W2071542017 cites W1999342464 @default.
- W2071542017 cites W2001198493 @default.
- W2071542017 cites W2039763154 @default.
- W2071542017 cites W2052805113 @default.
- W2071542017 cites W2068625979 @default.
- W2071542017 cites W2069168468 @default.
- W2071542017 cites W2070172122 @default.
- W2071542017 cites W2087789742 @default.
- W2071542017 cites W2089866410 @default.
- W2071542017 cites W2100118691 @default.
- W2071542017 cites W2114857298 @default.
- W2071542017 cites W2127632151 @default.
- W2071542017 cites W2134830236 @default.
- W2071542017 cites W2151691736 @default.
- W2071542017 cites W2159534773 @default.
- W2071542017 cites W2162626030 @default.
- W2071542017 cites W2164479654 @default.
- W2071542017 cites W2172114355 @default.
- W2071542017 cites W3036053928 @default.
- W2071542017 doi "https://doi.org/10.1021/ar200342u" @default.
- W2071542017 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22612471" @default.
- W2071542017 hasPublicationYear "2012" @default.
- W2071542017 type Work @default.
- W2071542017 sameAs 2071542017 @default.
- W2071542017 citedByCount "188" @default.
- W2071542017 countsByYear W20715420172013 @default.
- W2071542017 countsByYear W20715420172014 @default.
- W2071542017 countsByYear W20715420172015 @default.
- W2071542017 countsByYear W20715420172016 @default.
- W2071542017 countsByYear W20715420172017 @default.
- W2071542017 countsByYear W20715420172018 @default.
- W2071542017 countsByYear W20715420172019 @default.
- W2071542017 countsByYear W20715420172020 @default.
- W2071542017 countsByYear W20715420172021 @default.
- W2071542017 countsByYear W20715420172022 @default.
- W2071542017 countsByYear W20715420172023 @default.
- W2071542017 crossrefType "journal-article" @default.
- W2071542017 hasAuthorship W2071542017A5005067849 @default.
- W2071542017 hasAuthorship W2071542017A5007478289 @default.
- W2071542017 hasAuthorship W2071542017A5024784714 @default.
- W2071542017 hasAuthorship W2071542017A5066795820 @default.
- W2071542017 hasAuthorship W2071542017A5068870927 @default.
- W2071542017 hasConcept C112887158 @default.
- W2071542017 hasConcept C126061179 @default.
- W2071542017 hasConcept C137277065 @default.
- W2071542017 hasConcept C159467904 @default.
- W2071542017 hasConcept C166950319 @default.
- W2071542017 hasConcept C171250308 @default.
- W2071542017 hasConcept C178790620 @default.
- W2071542017 hasConcept C179303850 @default.
- W2071542017 hasConcept C185592680 @default.
- W2071542017 hasConcept C192406513 @default.
- W2071542017 hasConcept C192562407 @default.
- W2071542017 hasConcept C32909587 @default.
- W2071542017 hasConcept C93275456 @default.
- W2071542017 hasConceptScore W2071542017C112887158 @default.
- W2071542017 hasConceptScore W2071542017C126061179 @default.
- W2071542017 hasConceptScore W2071542017C137277065 @default.
- W2071542017 hasConceptScore W2071542017C159467904 @default.
- W2071542017 hasConceptScore W2071542017C166950319 @default.
- W2071542017 hasConceptScore W2071542017C171250308 @default.
- W2071542017 hasConceptScore W2071542017C178790620 @default.
- W2071542017 hasConceptScore W2071542017C179303850 @default.
- W2071542017 hasConceptScore W2071542017C185592680 @default.
- W2071542017 hasConceptScore W2071542017C192406513 @default.
- W2071542017 hasConceptScore W2071542017C192562407 @default.
- W2071542017 hasConceptScore W2071542017C32909587 @default.
- W2071542017 hasConceptScore W2071542017C93275456 @default.
- W2071542017 hasIssue "8" @default.
- W2071542017 hasLocation W20715420171 @default.
- W2071542017 hasLocation W20715420172 @default.
- W2071542017 hasOpenAccess W2071542017 @default.
- W2071542017 hasPrimaryLocation W20715420171 @default.
- W2071542017 hasRelatedWork W2045470202 @default.
- W2071542017 hasRelatedWork W2066405456 @default.
- W2071542017 hasRelatedWork W2473381192 @default.
- W2071542017 hasRelatedWork W2487101951 @default.
- W2071542017 hasRelatedWork W2499460458 @default.
- W2071542017 hasRelatedWork W2542713039 @default.
- W2071542017 hasRelatedWork W2624388487 @default.
- W2071542017 hasRelatedWork W2938612142 @default.