Matches in SemOpenAlex for { <https://semopenalex.org/work/W2071692022> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2071692022 endingPage "135" @default.
- W2071692022 startingPage "113" @default.
- W2071692022 abstract "This paper presents the methodology and theory for automatic spatial pattern discovery from multiple attributed relational graph samples. The spatial pattern is modelled as a mixture of probabilistic parametric attributed relational graphs. A statistic learning procedure is designed to learn the parameters of the spatial pattern model from the attributed relational graph samples. The learning procedure is formulated as a combinatorial non-deterministic process, which uses the expectation–maximization (EM) algorithm to find the maximum-likelihood estimates for the parameters of the spatial pattern model. The learned model summarizes the samples and captures the statistic characteristics of the appearance and structure of the spatial pattern, which is observed under various conditions. It can be used to detect the spatial pattern in new samples. The proposed approach is applied to unsupervised visual pattern extraction from multiple images in the experiments." @default.
- W2071692022 created "2016-06-24" @default.
- W2071692022 creator A5008831111 @default.
- W2071692022 creator A5033168441 @default.
- W2071692022 date "2004-04-01" @default.
- W2071692022 modified "2023-10-16" @default.
- W2071692022 title "Spatial pattern discovery by learning a probabilistic parametric model from multiple attributed relational graphs" @default.
- W2071692022 cites W1977866540 @default.
- W2071692022 cites W1979622972 @default.
- W2071692022 cites W1993005287 @default.
- W2071692022 cites W2035143052 @default.
- W2071692022 cites W2037591004 @default.
- W2071692022 cites W2098109165 @default.
- W2071692022 cites W2108182844 @default.
- W2071692022 cites W2109562068 @default.
- W2071692022 cites W2111605520 @default.
- W2071692022 cites W2124935070 @default.
- W2071692022 cites W2125335807 @default.
- W2071692022 cites W2126174118 @default.
- W2071692022 cites W2136761100 @default.
- W2071692022 cites W2161444532 @default.
- W2071692022 doi "https://doi.org/10.1016/j.dam.2002.11.007" @default.
- W2071692022 hasPublicationYear "2004" @default.
- W2071692022 type Work @default.
- W2071692022 sameAs 2071692022 @default.
- W2071692022 citedByCount "35" @default.
- W2071692022 countsByYear W20716920222012 @default.
- W2071692022 countsByYear W20716920222013 @default.
- W2071692022 countsByYear W20716920222014 @default.
- W2071692022 countsByYear W20716920222015 @default.
- W2071692022 countsByYear W20716920222016 @default.
- W2071692022 countsByYear W20716920222017 @default.
- W2071692022 countsByYear W20716920222021 @default.
- W2071692022 crossrefType "journal-article" @default.
- W2071692022 hasAuthorship W2071692022A5008831111 @default.
- W2071692022 hasAuthorship W2071692022A5033168441 @default.
- W2071692022 hasBestOaLocation W20716920221 @default.
- W2071692022 hasConcept C105795698 @default.
- W2071692022 hasConcept C11413529 @default.
- W2071692022 hasConcept C114614502 @default.
- W2071692022 hasConcept C117251300 @default.
- W2071692022 hasConcept C124101348 @default.
- W2071692022 hasConcept C126255220 @default.
- W2071692022 hasConcept C132525143 @default.
- W2071692022 hasConcept C153180895 @default.
- W2071692022 hasConcept C154945302 @default.
- W2071692022 hasConcept C177877439 @default.
- W2071692022 hasConcept C182081679 @default.
- W2071692022 hasConcept C24574437 @default.
- W2071692022 hasConcept C2776330181 @default.
- W2071692022 hasConcept C33923547 @default.
- W2071692022 hasConcept C41008148 @default.
- W2071692022 hasConcept C49781872 @default.
- W2071692022 hasConcept C49937458 @default.
- W2071692022 hasConcept C5655090 @default.
- W2071692022 hasConcept C89128539 @default.
- W2071692022 hasConceptScore W2071692022C105795698 @default.
- W2071692022 hasConceptScore W2071692022C11413529 @default.
- W2071692022 hasConceptScore W2071692022C114614502 @default.
- W2071692022 hasConceptScore W2071692022C117251300 @default.
- W2071692022 hasConceptScore W2071692022C124101348 @default.
- W2071692022 hasConceptScore W2071692022C126255220 @default.
- W2071692022 hasConceptScore W2071692022C132525143 @default.
- W2071692022 hasConceptScore W2071692022C153180895 @default.
- W2071692022 hasConceptScore W2071692022C154945302 @default.
- W2071692022 hasConceptScore W2071692022C177877439 @default.
- W2071692022 hasConceptScore W2071692022C182081679 @default.
- W2071692022 hasConceptScore W2071692022C24574437 @default.
- W2071692022 hasConceptScore W2071692022C2776330181 @default.
- W2071692022 hasConceptScore W2071692022C33923547 @default.
- W2071692022 hasConceptScore W2071692022C41008148 @default.
- W2071692022 hasConceptScore W2071692022C49781872 @default.
- W2071692022 hasConceptScore W2071692022C49937458 @default.
- W2071692022 hasConceptScore W2071692022C5655090 @default.
- W2071692022 hasConceptScore W2071692022C89128539 @default.
- W2071692022 hasIssue "1-3" @default.
- W2071692022 hasLocation W20716920221 @default.
- W2071692022 hasLocation W20716920222 @default.
- W2071692022 hasOpenAccess W2071692022 @default.
- W2071692022 hasPrimaryLocation W20716920221 @default.
- W2071692022 hasRelatedWork W1487588218 @default.
- W2071692022 hasRelatedWork W1966994088 @default.
- W2071692022 hasRelatedWork W2007181784 @default.
- W2071692022 hasRelatedWork W2053883333 @default.
- W2071692022 hasRelatedWork W2102319274 @default.
- W2071692022 hasRelatedWork W2148660821 @default.
- W2071692022 hasRelatedWork W2187085270 @default.
- W2071692022 hasRelatedWork W2894195050 @default.
- W2071692022 hasRelatedWork W2950843469 @default.
- W2071692022 hasRelatedWork W4302327664 @default.
- W2071692022 hasVolume "139" @default.
- W2071692022 isParatext "false" @default.
- W2071692022 isRetracted "false" @default.
- W2071692022 magId "2071692022" @default.
- W2071692022 workType "article" @default.