Matches in SemOpenAlex for { <https://semopenalex.org/work/W2071707735> ?p ?o ?g. }
- W2071707735 endingPage "8290" @default.
- W2071707735 startingPage "8282" @default.
- W2071707735 abstract "The murine epididymis synthesizes and secretes a retinoic acid-binding protein (mE-RABP) that belongs to the lipocalin superfamily. The gene encoding mE-RABP is specifically expressed in the mouse mid/distal caput epididymidis under androgen control. In transgenic mice, a 5-kilobase pair (kb) promoter fragment, but not a 0.6-kb fragment, of the mE-RABP gene driving the chloramphenicol acetyltransferase (CAT) reporter gene restricted high level of transgene expression to the caput epididymidis. No transgene expression was detected in any other male or female tissues. Immunolocalization of the CAT protein and in situ hybridization of the corresponding CAT mRNA indicated that transgene expression occurred in the principal cells of the mid/distal caput epididymidis, thereby mimicking the spatial endogenous mE-RABP gene expression. Transgene and mE-RABP gene expression was detected from 30 days and progressively increased until 60 days of age. Castration, efferent duct ligation, and hormone replacement studies demonstrated that transgene expression was specifically regulated by androgen but not by any other testicular factors. Altogether, our results demonstrate that the 5-kb promoter fragment of the mE-RABP gene contains all of the information required for the hormonal regulation and the spatial and temporal expression of the mE-RABP gene in the epididymis. The murine epididymis synthesizes and secretes a retinoic acid-binding protein (mE-RABP) that belongs to the lipocalin superfamily. The gene encoding mE-RABP is specifically expressed in the mouse mid/distal caput epididymidis under androgen control. In transgenic mice, a 5-kilobase pair (kb) promoter fragment, but not a 0.6-kb fragment, of the mE-RABP gene driving the chloramphenicol acetyltransferase (CAT) reporter gene restricted high level of transgene expression to the caput epididymidis. No transgene expression was detected in any other male or female tissues. Immunolocalization of the CAT protein and in situ hybridization of the corresponding CAT mRNA indicated that transgene expression occurred in the principal cells of the mid/distal caput epididymidis, thereby mimicking the spatial endogenous mE-RABP gene expression. Transgene and mE-RABP gene expression was detected from 30 days and progressively increased until 60 days of age. Castration, efferent duct ligation, and hormone replacement studies demonstrated that transgene expression was specifically regulated by androgen but not by any other testicular factors. Altogether, our results demonstrate that the 5-kb promoter fragment of the mE-RABP gene contains all of the information required for the hormonal regulation and the spatial and temporal expression of the mE-RABP gene in the epididymis. murine epididymal retinoic acid-binding protein androgen-specific response region base pair(s) kilobase pair(s) chloramphenicol acetyltransferase polymerase chain reaction phosphate-buffered saline During their transit through the epididymis, spermatozoa undergo biochemical and morphological changes to acquire motility and the ability to fertilize an oocyte in vivo (1Bedford J.M. J. Exp. Zool. 1967; 166: 271-281Crossref PubMed Scopus (103) Google Scholar, 2Orgebin-Crist M.C. Nature. 1967; 216: 816-818Crossref PubMed Scopus (161) Google Scholar). The maturation process progresses along the epididymal duct and is believed to be dependent on epididymal secretory proteins.The epididymis displays a highly region-specific pattern of gene expression. However, little is known regarding the molecular mechanisms that are involved in the regulation of tissue- and region-specific gene expression. Gene expression in the epididymis is mainly under androgen control (for review, see Ref. 3Orgebin-Crist M.C. Bhasin D. Gabelnick H.L. Spieler J.M. Swerdloff R.S. Wang C. Pharmacology, Biology, and Clinical Applications of Androgens. Wiley-Liss Inc., New York1996: 27-38Google Scholar). Indeed, androgen withdrawal, either by orchiectomy or by hypophysectomy, prevents the sperm maturation process (4Orgebin-Crist M.C. Tichenor P.L. Nature. 1973; 245: 328-329Crossref PubMed Scopus (32) Google Scholar, 5Dyson A.L. Orgebin-Crist M.C. Endocrinology. 1973; 93: 391-402Crossref PubMed Scopus (141) Google Scholar). However, testicular factors (6Douglass J. Garrett S.H. Garrett J.E. Ann. N. Y. Acad. Sci. 1991; 637: 384-398Crossref PubMed Scopus (31) Google Scholar), estrogen (7Toney T.W. Danzo B.J. Endocrinology. 1989; 125: 243-249Crossref PubMed Scopus (19) Google Scholar), growth factors (8Lan Z.J. Labus J.C. Hinton B.T. Biol. Reprod. 1998; 58: 197-206Crossref PubMed Scopus (82) Google Scholar), and retinoic acid (9Astraudo C. Lefevre A. Boue F. Durr F. Finaz C. Arch. Androl. 1995; 35: 247-259Crossref PubMed Scopus (9) Google Scholar) have also been demonstrated to be involved in epididymis-specific gene expression. Whether these endocrine and paracrine signal pathways cooperate to restrict gene expression to a narrow segment of the epididymal duct is unclear.We previously described two proteins (major and minor forms) that are generated by the differential cleavage of a unique precursor, initially named mouse epididymal protein 10 (10Rankin T.L. Tsuruta K.J. Holland M.K. Griswold M.D. Orgebin-Crist M.C. Biol. Reprod. 1992; 46: 747-766Crossref PubMed Scopus (103) Google Scholar). This protein, recently renamed murine epididymal retinoic acid-binding protein (mE-RABP)1 (11Lareyre J.J. Zheng W.L. Zhao G.Q. Kasper S. Newcomer M.E. Matusik R.J. Ong D.E. Orgebin-Crist M.C. Endocrinology. 1998; 139: 2971-2981Crossref PubMed Scopus (44) Google Scholar), is specifically synthesized and secreted by the principal cells of the distal caput epididymidis. The mE-RABP protein binds active retinoids (9-cis- and all-trans-retinoic acid) but not retinol (12Rankin T.L. Ong D.E. Orgebin-Crist M.C. Biol. Reprod. 1992; 46: 767-771Crossref PubMed Scopus (31) Google Scholar) and is the orthologue of two other retinoic acid-binding proteins described in the rat epididymis. These rat proteins were successively named B/C (13Brooks D.E. Means A.R. Wright E.J. Singh S.P. Tiver K.K. J. Biol. Chem. 1986; 261: 4956-4961Abstract Full Text PDF PubMed Google Scholar), EBP 1 and EBP 2 (14Ong D.E. Chytil F. Arch. Biochem. Biophys. 1988; 267: 474-478Crossref PubMed Scopus (36) Google Scholar), E-RABP (15Newcomer M.E. Ong D.E. J. Biol. Chem. 1990; 265: 12876-12879Abstract Full Text PDF PubMed Google Scholar), and ESP I (16Girotti M. Jones R. Emery D.C. Chia W. Hall L. Biochem. J. 1992; 281: 203-210Crossref PubMed Scopus (45) Google Scholar). Analysis of the amino acid sequence and putative three-dimensional structure show that mE-RABP belongs to the lipocalin superfamily (11Lareyre J.J. Zheng W.L. Zhao G.Q. Kasper S. Newcomer M.E. Matusik R.J. Ong D.E. Orgebin-Crist M.C. Endocrinology. 1998; 139: 2971-2981Crossref PubMed Scopus (44) Google Scholar).The mE-RABP protein is encoded by a single-copy gene localized to the [A3-B] region of mouse chromosome 2, a region rich in genes encoding lipocalin and displaying a similar genomic structure to that of the mE-RABP gene (17Lareyre J.J. Mattei M.-G. Kasper S. Ong D.E. Matusik R.J. Orgebin-Crist M.-C. Mol. Reprod. Dev. 1998; 50: 387-395Crossref PubMed Scopus (18) Google Scholar).The mE-RABP gene expression is androgen-regulated in vivo(11Lareyre J.J. Zheng W.L. Zhao G.Q. Kasper S. Newcomer M.E. Matusik R.J. Ong D.E. Orgebin-Crist M.C. Endocrinology. 1998; 139: 2971-2981Crossref PubMed Scopus (44) Google Scholar). In addition, transient transfection studies have shown that a functional androgen-specific response region (ARR) is localized within the first 600 bp of the mE-RABP gene promoter (18.Lareyre, J. J., Kasper, S., Ong, D. E., Matusik, R. J., and Orgebin-Crist, M. C. (1998) Xth European Workshop on Molecular and Cellular Endocrinology of the Testis, Capri, Italy, March 28 to April 1, 1998 (Abstr. E14).Google Scholar). The androgen dependence and the strong tissue- and region-specific expression make the mE-RABP gene a good candidate to study the molecular mechanisms that restrict gene expression to a narrow segment of the epididymis under androgen control. In the absence of appropriate epididymal cell lines, cis-DNA regulatory elements involved in the tissue-specific and androgen-regulated expression of the mE-RABP gene can only be identified in transgenic mice.In the present study, we demonstrate that 5 kb of the 5′-flanking region of the mE-RABP gene can drive the specific expression of the chloramphenicol acetyltransferase (CAT) reporter gene to the principal cells of the mid/distal caput epididymidis, thereby mimicking the expression of the endogenous gene. We also demonstrate that the 5-kb DNA fragment contains most, if not all, of the information required for the temporal and hormonal regulation of the mE-RABP gene in vivo. During their transit through the epididymis, spermatozoa undergo biochemical and morphological changes to acquire motility and the ability to fertilize an oocyte in vivo (1Bedford J.M. J. Exp. Zool. 1967; 166: 271-281Crossref PubMed Scopus (103) Google Scholar, 2Orgebin-Crist M.C. Nature. 1967; 216: 816-818Crossref PubMed Scopus (161) Google Scholar). The maturation process progresses along the epididymal duct and is believed to be dependent on epididymal secretory proteins. The epididymis displays a highly region-specific pattern of gene expression. However, little is known regarding the molecular mechanisms that are involved in the regulation of tissue- and region-specific gene expression. Gene expression in the epididymis is mainly under androgen control (for review, see Ref. 3Orgebin-Crist M.C. Bhasin D. Gabelnick H.L. Spieler J.M. Swerdloff R.S. Wang C. Pharmacology, Biology, and Clinical Applications of Androgens. Wiley-Liss Inc., New York1996: 27-38Google Scholar). Indeed, androgen withdrawal, either by orchiectomy or by hypophysectomy, prevents the sperm maturation process (4Orgebin-Crist M.C. Tichenor P.L. Nature. 1973; 245: 328-329Crossref PubMed Scopus (32) Google Scholar, 5Dyson A.L. Orgebin-Crist M.C. Endocrinology. 1973; 93: 391-402Crossref PubMed Scopus (141) Google Scholar). However, testicular factors (6Douglass J. Garrett S.H. Garrett J.E. Ann. N. Y. Acad. Sci. 1991; 637: 384-398Crossref PubMed Scopus (31) Google Scholar), estrogen (7Toney T.W. Danzo B.J. Endocrinology. 1989; 125: 243-249Crossref PubMed Scopus (19) Google Scholar), growth factors (8Lan Z.J. Labus J.C. Hinton B.T. Biol. Reprod. 1998; 58: 197-206Crossref PubMed Scopus (82) Google Scholar), and retinoic acid (9Astraudo C. Lefevre A. Boue F. Durr F. Finaz C. Arch. Androl. 1995; 35: 247-259Crossref PubMed Scopus (9) Google Scholar) have also been demonstrated to be involved in epididymis-specific gene expression. Whether these endocrine and paracrine signal pathways cooperate to restrict gene expression to a narrow segment of the epididymal duct is unclear. We previously described two proteins (major and minor forms) that are generated by the differential cleavage of a unique precursor, initially named mouse epididymal protein 10 (10Rankin T.L. Tsuruta K.J. Holland M.K. Griswold M.D. Orgebin-Crist M.C. Biol. Reprod. 1992; 46: 747-766Crossref PubMed Scopus (103) Google Scholar). This protein, recently renamed murine epididymal retinoic acid-binding protein (mE-RABP)1 (11Lareyre J.J. Zheng W.L. Zhao G.Q. Kasper S. Newcomer M.E. Matusik R.J. Ong D.E. Orgebin-Crist M.C. Endocrinology. 1998; 139: 2971-2981Crossref PubMed Scopus (44) Google Scholar), is specifically synthesized and secreted by the principal cells of the distal caput epididymidis. The mE-RABP protein binds active retinoids (9-cis- and all-trans-retinoic acid) but not retinol (12Rankin T.L. Ong D.E. Orgebin-Crist M.C. Biol. Reprod. 1992; 46: 767-771Crossref PubMed Scopus (31) Google Scholar) and is the orthologue of two other retinoic acid-binding proteins described in the rat epididymis. These rat proteins were successively named B/C (13Brooks D.E. Means A.R. Wright E.J. Singh S.P. Tiver K.K. J. Biol. Chem. 1986; 261: 4956-4961Abstract Full Text PDF PubMed Google Scholar), EBP 1 and EBP 2 (14Ong D.E. Chytil F. Arch. Biochem. Biophys. 1988; 267: 474-478Crossref PubMed Scopus (36) Google Scholar), E-RABP (15Newcomer M.E. Ong D.E. J. Biol. Chem. 1990; 265: 12876-12879Abstract Full Text PDF PubMed Google Scholar), and ESP I (16Girotti M. Jones R. Emery D.C. Chia W. Hall L. Biochem. J. 1992; 281: 203-210Crossref PubMed Scopus (45) Google Scholar). Analysis of the amino acid sequence and putative three-dimensional structure show that mE-RABP belongs to the lipocalin superfamily (11Lareyre J.J. Zheng W.L. Zhao G.Q. Kasper S. Newcomer M.E. Matusik R.J. Ong D.E. Orgebin-Crist M.C. Endocrinology. 1998; 139: 2971-2981Crossref PubMed Scopus (44) Google Scholar). The mE-RABP protein is encoded by a single-copy gene localized to the [A3-B] region of mouse chromosome 2, a region rich in genes encoding lipocalin and displaying a similar genomic structure to that of the mE-RABP gene (17Lareyre J.J. Mattei M.-G. Kasper S. Ong D.E. Matusik R.J. Orgebin-Crist M.-C. Mol. Reprod. Dev. 1998; 50: 387-395Crossref PubMed Scopus (18) Google Scholar). The mE-RABP gene expression is androgen-regulated in vivo(11Lareyre J.J. Zheng W.L. Zhao G.Q. Kasper S. Newcomer M.E. Matusik R.J. Ong D.E. Orgebin-Crist M.C. Endocrinology. 1998; 139: 2971-2981Crossref PubMed Scopus (44) Google Scholar). In addition, transient transfection studies have shown that a functional androgen-specific response region (ARR) is localized within the first 600 bp of the mE-RABP gene promoter (18.Lareyre, J. J., Kasper, S., Ong, D. E., Matusik, R. J., and Orgebin-Crist, M. C. (1998) Xth European Workshop on Molecular and Cellular Endocrinology of the Testis, Capri, Italy, March 28 to April 1, 1998 (Abstr. E14).Google Scholar). The androgen dependence and the strong tissue- and region-specific expression make the mE-RABP gene a good candidate to study the molecular mechanisms that restrict gene expression to a narrow segment of the epididymis under androgen control. In the absence of appropriate epididymal cell lines, cis-DNA regulatory elements involved in the tissue-specific and androgen-regulated expression of the mE-RABP gene can only be identified in transgenic mice. In the present study, we demonstrate that 5 kb of the 5′-flanking region of the mE-RABP gene can drive the specific expression of the chloramphenicol acetyltransferase (CAT) reporter gene to the principal cells of the mid/distal caput epididymidis, thereby mimicking the expression of the endogenous gene. We also demonstrate that the 5-kb DNA fragment contains most, if not all, of the information required for the temporal and hormonal regulation of the mE-RABP gene in vivo. We gratefully acknowledge the Vanderbilt Transgenic/ES cell Shared Resource for generating the transgenic mouse lines. We thank Drs. C. Pettepher and J. Wright for helpful advice throughout the course of these studies. We thank Dr. B. J. Danzo for critical comments on the manuscript. The DNA sequencing was performed by the Cancer Center DNA Sequencing Core, directed by Dr. K. Bhat." @default.
- W2071707735 created "2016-06-24" @default.
- W2071707735 creator A5002574645 @default.
- W2071707735 creator A5031401837 @default.
- W2071707735 creator A5039152252 @default.
- W2071707735 creator A5053354667 @default.
- W2071707735 creator A5062994289 @default.
- W2071707735 creator A5081923385 @default.
- W2071707735 creator A5087285670 @default.
- W2071707735 date "1999-03-01" @default.
- W2071707735 modified "2023-09-30" @default.
- W2071707735 title "A 5-Kilobase Pair Promoter Fragment of the Murine Epididymal Retinoic Acid-binding Protein Gene Drives the Tissue-specific, Cell-specific, and Androgen-regulated Expression of a Foreign Gene in the Epididymis of Transgenic Mice" @default.
- W2071707735 cites W1519487693 @default.
- W2071707735 cites W1550078080 @default.
- W2071707735 cites W1717354875 @default.
- W2071707735 cites W1800505994 @default.
- W2071707735 cites W1968191899 @default.
- W2071707735 cites W1982598173 @default.
- W2071707735 cites W1985747461 @default.
- W2071707735 cites W1993838543 @default.
- W2071707735 cites W2000987137 @default.
- W2071707735 cites W2010057554 @default.
- W2071707735 cites W2027249164 @default.
- W2071707735 cites W2031663580 @default.
- W2071707735 cites W2038677555 @default.
- W2071707735 cites W2048018675 @default.
- W2071707735 cites W2049180971 @default.
- W2071707735 cites W2053656665 @default.
- W2071707735 cites W2057737324 @default.
- W2071707735 cites W2066002362 @default.
- W2071707735 cites W2077077811 @default.
- W2071707735 cites W2080828688 @default.
- W2071707735 cites W2086848370 @default.
- W2071707735 cites W2088326681 @default.
- W2071707735 cites W2094619041 @default.
- W2071707735 cites W2098197582 @default.
- W2071707735 cites W2101108802 @default.
- W2071707735 cites W2103933171 @default.
- W2071707735 cites W2113008095 @default.
- W2071707735 cites W2114938149 @default.
- W2071707735 cites W2122385641 @default.
- W2071707735 cites W2131897044 @default.
- W2071707735 cites W2134101564 @default.
- W2071707735 cites W2144303636 @default.
- W2071707735 cites W2144899441 @default.
- W2071707735 cites W2148718006 @default.
- W2071707735 cites W2152075169 @default.
- W2071707735 cites W2161283057 @default.
- W2071707735 cites W2316993960 @default.
- W2071707735 cites W4253663860 @default.
- W2071707735 cites W97156783 @default.
- W2071707735 doi "https://doi.org/10.1074/jbc.274.12.8282" @default.
- W2071707735 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10075734" @default.
- W2071707735 hasPublicationYear "1999" @default.
- W2071707735 type Work @default.
- W2071707735 sameAs 2071707735 @default.
- W2071707735 citedByCount "38" @default.
- W2071707735 countsByYear W20717077352012 @default.
- W2071707735 countsByYear W20717077352013 @default.
- W2071707735 countsByYear W20717077352014 @default.
- W2071707735 countsByYear W20717077352017 @default.
- W2071707735 countsByYear W20717077352018 @default.
- W2071707735 countsByYear W20717077352019 @default.
- W2071707735 crossrefType "journal-article" @default.
- W2071707735 hasAuthorship W2071707735A5002574645 @default.
- W2071707735 hasAuthorship W2071707735A5031401837 @default.
- W2071707735 hasAuthorship W2071707735A5039152252 @default.
- W2071707735 hasAuthorship W2071707735A5053354667 @default.
- W2071707735 hasAuthorship W2071707735A5062994289 @default.
- W2071707735 hasAuthorship W2071707735A5081923385 @default.
- W2071707735 hasAuthorship W2071707735A5087285670 @default.
- W2071707735 hasBestOaLocation W20717077351 @default.
- W2071707735 hasConcept C104317684 @default.
- W2071707735 hasConcept C150194340 @default.
- W2071707735 hasConcept C153911025 @default.
- W2071707735 hasConcept C2776717313 @default.
- W2071707735 hasConcept C2781087480 @default.
- W2071707735 hasConcept C2781121885 @default.
- W2071707735 hasConcept C2781254305 @default.
- W2071707735 hasConcept C54355233 @default.
- W2071707735 hasConcept C553089730 @default.
- W2071707735 hasConcept C86803240 @default.
- W2071707735 hasConcept C95444343 @default.
- W2071707735 hasConceptScore W2071707735C104317684 @default.
- W2071707735 hasConceptScore W2071707735C150194340 @default.
- W2071707735 hasConceptScore W2071707735C153911025 @default.
- W2071707735 hasConceptScore W2071707735C2776717313 @default.
- W2071707735 hasConceptScore W2071707735C2781087480 @default.
- W2071707735 hasConceptScore W2071707735C2781121885 @default.
- W2071707735 hasConceptScore W2071707735C2781254305 @default.
- W2071707735 hasConceptScore W2071707735C54355233 @default.
- W2071707735 hasConceptScore W2071707735C553089730 @default.
- W2071707735 hasConceptScore W2071707735C86803240 @default.
- W2071707735 hasConceptScore W2071707735C95444343 @default.
- W2071707735 hasIssue "12" @default.
- W2071707735 hasLocation W20717077351 @default.
- W2071707735 hasLocation W20717077352 @default.
- W2071707735 hasLocation W20717077353 @default.