Matches in SemOpenAlex for { <https://semopenalex.org/work/W2071717764> ?p ?o ?g. }
- W2071717764 endingPage "529" @default.
- W2071717764 startingPage "520" @default.
- W2071717764 abstract "The electrokinetic behavior of nanofluidic devices is dominated by the electrical double layers at the device walls. Therefore, accurate, predictive models of double layers are essential for device design and optimization. In this paper, we demonstrate that density functional theory (DFT) of electrolytes is an accurate and computationally efficient method for computing finite ion size effects and the resulting ion–ion correlations that are neglected in classical double layer theories such as Poisson–Boltzmann. Because DFT is derived from liquid-theory thermodynamic principles, it is ideal for nanofluidic systems with small spatial dimensions, high surface charge densities, high ion concentrations, and/or large ions. Ion–ion correlations are expected to be important in these regimes, leading to nonlinear phenomena such as charge inversion, wherein more counterions adsorb at the wall than is necessary to neutralize its surface charge, leading to a second layer of co-ions. We show that DFT, unlike other theories that do not include ion–ion correlations, can predict charge inversion and other nonlinear phenomena that lead to qualitatively different current densities and ion velocities for both pressure-driven and electro-osmotic flows. We therefore propose that DFT can be a valuable modeling and design tool for nanofluidic devices as they become smaller and more highly charged." @default.
- W2071717764 created "2016-06-24" @default.
- W2071717764 creator A5018420940 @default.
- W2071717764 creator A5021584861 @default.
- W2071717764 creator A5080523470 @default.
- W2071717764 creator A5080748819 @default.
- W2071717764 date "2011-07-01" @default.
- W2071717764 modified "2023-09-25" @default.
- W2071717764 title "Efficiently accounting for ion correlations in electrokinetic nanofluidic devices using density functional theory" @default.
- W2071717764 cites W1964582727 @default.
- W2071717764 cites W1965125112 @default.
- W2071717764 cites W1968631290 @default.
- W2071717764 cites W1970882122 @default.
- W2071717764 cites W1972270832 @default.
- W2071717764 cites W1972760372 @default.
- W2071717764 cites W1974955350 @default.
- W2071717764 cites W1986487532 @default.
- W2071717764 cites W1988111388 @default.
- W2071717764 cites W1991572399 @default.
- W2071717764 cites W1994764834 @default.
- W2071717764 cites W1998308499 @default.
- W2071717764 cites W2000337643 @default.
- W2071717764 cites W2000883098 @default.
- W2071717764 cites W2002659345 @default.
- W2071717764 cites W2003997952 @default.
- W2071717764 cites W2011372139 @default.
- W2071717764 cites W2014416110 @default.
- W2071717764 cites W2016130400 @default.
- W2071717764 cites W2020039237 @default.
- W2071717764 cites W2023473120 @default.
- W2071717764 cites W2023779165 @default.
- W2071717764 cites W2025004709 @default.
- W2071717764 cites W2025148954 @default.
- W2071717764 cites W2029339510 @default.
- W2071717764 cites W2032158768 @default.
- W2071717764 cites W2033156442 @default.
- W2071717764 cites W2033899241 @default.
- W2071717764 cites W2035310732 @default.
- W2071717764 cites W2037114987 @default.
- W2071717764 cites W2039210104 @default.
- W2071717764 cites W2040692275 @default.
- W2071717764 cites W2059469174 @default.
- W2071717764 cites W2061076475 @default.
- W2071717764 cites W2068863837 @default.
- W2071717764 cites W2069020163 @default.
- W2071717764 cites W2069834501 @default.
- W2071717764 cites W2072419120 @default.
- W2071717764 cites W2072848650 @default.
- W2071717764 cites W2076195008 @default.
- W2071717764 cites W2077793706 @default.
- W2071717764 cites W2077806518 @default.
- W2071717764 cites W2078780505 @default.
- W2071717764 cites W2086372675 @default.
- W2071717764 cites W2092267259 @default.
- W2071717764 cites W2092649193 @default.
- W2071717764 cites W2099431372 @default.
- W2071717764 cites W2102667231 @default.
- W2071717764 cites W2107250568 @default.
- W2071717764 cites W2130011159 @default.
- W2071717764 cites W2137779706 @default.
- W2071717764 cites W2141312404 @default.
- W2071717764 cites W2144992168 @default.
- W2071717764 cites W2145123561 @default.
- W2071717764 cites W2146289785 @default.
- W2071717764 cites W2154014361 @default.
- W2071717764 cites W2158836259 @default.
- W2071717764 cites W2159044575 @default.
- W2071717764 cites W2167152334 @default.
- W2071717764 cites W3102748877 @default.
- W2071717764 cites W3106090381 @default.
- W2071717764 doi "https://doi.org/10.1016/j.jcis.2011.03.088" @default.
- W2071717764 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21531429" @default.
- W2071717764 hasPublicationYear "2011" @default.
- W2071717764 type Work @default.
- W2071717764 sameAs 2071717764 @default.
- W2071717764 citedByCount "43" @default.
- W2071717764 countsByYear W20717177642012 @default.
- W2071717764 countsByYear W20717177642013 @default.
- W2071717764 countsByYear W20717177642014 @default.
- W2071717764 countsByYear W20717177642015 @default.
- W2071717764 countsByYear W20717177642016 @default.
- W2071717764 countsByYear W20717177642017 @default.
- W2071717764 countsByYear W20717177642018 @default.
- W2071717764 countsByYear W20717177642019 @default.
- W2071717764 countsByYear W20717177642020 @default.
- W2071717764 countsByYear W20717177642021 @default.
- W2071717764 countsByYear W20717177642022 @default.
- W2071717764 countsByYear W20717177642023 @default.
- W2071717764 crossrefType "journal-article" @default.
- W2071717764 hasAuthorship W2071717764A5018420940 @default.
- W2071717764 hasAuthorship W2071717764A5021584861 @default.
- W2071717764 hasAuthorship W2071717764A5080523470 @default.
- W2071717764 hasAuthorship W2071717764A5080748819 @default.
- W2071717764 hasConcept C121332964 @default.
- W2071717764 hasConcept C145148216 @default.
- W2071717764 hasConcept C147597530 @default.
- W2071717764 hasConcept C147789679 @default.
- W2071717764 hasConcept C150708132 @default.