Matches in SemOpenAlex for { <https://semopenalex.org/work/W2071749087> ?p ?o ?g. }
- W2071749087 endingPage "52" @default.
- W2071749087 startingPage "45" @default.
- W2071749087 abstract "Medical data sets are usually small and have very high dimensionality. Too many attributes will make the analysis less efficient and will not necessarily increase accuracy, while too few data will decrease the modeling stability. Consequently, the main objective of this study is to extract the optimal subset of features to increase analytical performance when the data set is small. This paper proposes a fuzzy-based non-linear transformation method to extend classification related information from the original data attribute values for a small data set. Based on the new transformed data set, this study applies principal component analysis (PCA) to extract the optimal subset of features. Finally, we use the transformed data with these optimal features as the input data for a learning tool, a support vector machine (SVM). Six medical data sets: Pima Indians’ diabetes, Wisconsin diagnostic breast cancer, Parkinson disease, echocardiogram, BUPA liver disorders dataset, and bladder cancer cases in Taiwan, are employed to illustrate the approach presented in this paper. This research uses the t-test to evaluate the classification accuracy for a single data set; and uses the Friedman test to show the proposed method is better than other methods over the multiple data sets. The experiment results indicate that the proposed method has better classification performance than either PCA or kernel principal component analysis (KPCA) when the data set is small, and suggest creating new purpose-related information to improve the analysis performance. This paper has shown that feature extraction is important as a function of feature selection for efficient data analysis. When the data set is small, using the fuzzy-based transformation method presented in this work to increase the information available produces better results than the PCA and KPCA approaches." @default.
- W2071749087 created "2016-06-24" @default.
- W2071749087 creator A5028150954 @default.
- W2071749087 creator A5066974453 @default.
- W2071749087 creator A5083878919 @default.
- W2071749087 date "2011-05-01" @default.
- W2071749087 modified "2023-10-01" @default.
- W2071749087 title "A fuzzy-based data transformation for feature extraction to increase classification performance with small medical data sets" @default.
- W2071749087 cites W1969163824 @default.
- W2071749087 cites W1983024255 @default.
- W2071749087 cites W1996777278 @default.
- W2071749087 cites W2000595281 @default.
- W2071749087 cites W2010354425 @default.
- W2071749087 cites W2023381609 @default.
- W2071749087 cites W2033500239 @default.
- W2071749087 cites W2049222570 @default.
- W2071749087 cites W2052782107 @default.
- W2071749087 cites W2059582437 @default.
- W2071749087 cites W2060407929 @default.
- W2071749087 cites W2086045666 @default.
- W2071749087 cites W2097932601 @default.
- W2071749087 cites W2100235303 @default.
- W2071749087 cites W2102831150 @default.
- W2071749087 cites W2103699906 @default.
- W2071749087 cites W2128382462 @default.
- W2071749087 cites W2132120643 @default.
- W2071749087 cites W2140095548 @default.
- W2071749087 cites W2148633389 @default.
- W2071749087 cites W2149470226 @default.
- W2071749087 cites W54548619 @default.
- W2071749087 doi "https://doi.org/10.1016/j.artmed.2011.02.001" @default.
- W2071749087 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21493051" @default.
- W2071749087 hasPublicationYear "2011" @default.
- W2071749087 type Work @default.
- W2071749087 sameAs 2071749087 @default.
- W2071749087 citedByCount "126" @default.
- W2071749087 countsByYear W20717490872013 @default.
- W2071749087 countsByYear W20717490872014 @default.
- W2071749087 countsByYear W20717490872015 @default.
- W2071749087 countsByYear W20717490872016 @default.
- W2071749087 countsByYear W20717490872017 @default.
- W2071749087 countsByYear W20717490872018 @default.
- W2071749087 countsByYear W20717490872019 @default.
- W2071749087 countsByYear W20717490872020 @default.
- W2071749087 countsByYear W20717490872021 @default.
- W2071749087 countsByYear W20717490872022 @default.
- W2071749087 countsByYear W20717490872023 @default.
- W2071749087 crossrefType "journal-article" @default.
- W2071749087 hasAuthorship W2071749087A5028150954 @default.
- W2071749087 hasAuthorship W2071749087A5066974453 @default.
- W2071749087 hasAuthorship W2071749087A5083878919 @default.
- W2071749087 hasConcept C104317684 @default.
- W2071749087 hasConcept C114614502 @default.
- W2071749087 hasConcept C122280245 @default.
- W2071749087 hasConcept C12267149 @default.
- W2071749087 hasConcept C124101348 @default.
- W2071749087 hasConcept C148483581 @default.
- W2071749087 hasConcept C153180895 @default.
- W2071749087 hasConcept C154945302 @default.
- W2071749087 hasConcept C182335926 @default.
- W2071749087 hasConcept C185592680 @default.
- W2071749087 hasConcept C204241405 @default.
- W2071749087 hasConcept C27438332 @default.
- W2071749087 hasConcept C33923547 @default.
- W2071749087 hasConcept C41008148 @default.
- W2071749087 hasConcept C52622490 @default.
- W2071749087 hasConcept C55493867 @default.
- W2071749087 hasConcept C58489278 @default.
- W2071749087 hasConcept C74193536 @default.
- W2071749087 hasConceptScore W2071749087C104317684 @default.
- W2071749087 hasConceptScore W2071749087C114614502 @default.
- W2071749087 hasConceptScore W2071749087C122280245 @default.
- W2071749087 hasConceptScore W2071749087C12267149 @default.
- W2071749087 hasConceptScore W2071749087C124101348 @default.
- W2071749087 hasConceptScore W2071749087C148483581 @default.
- W2071749087 hasConceptScore W2071749087C153180895 @default.
- W2071749087 hasConceptScore W2071749087C154945302 @default.
- W2071749087 hasConceptScore W2071749087C182335926 @default.
- W2071749087 hasConceptScore W2071749087C185592680 @default.
- W2071749087 hasConceptScore W2071749087C204241405 @default.
- W2071749087 hasConceptScore W2071749087C27438332 @default.
- W2071749087 hasConceptScore W2071749087C33923547 @default.
- W2071749087 hasConceptScore W2071749087C41008148 @default.
- W2071749087 hasConceptScore W2071749087C52622490 @default.
- W2071749087 hasConceptScore W2071749087C55493867 @default.
- W2071749087 hasConceptScore W2071749087C58489278 @default.
- W2071749087 hasConceptScore W2071749087C74193536 @default.
- W2071749087 hasIssue "1" @default.
- W2071749087 hasLocation W20717490871 @default.
- W2071749087 hasLocation W20717490872 @default.
- W2071749087 hasOpenAccess W2071749087 @default.
- W2071749087 hasPrimaryLocation W20717490871 @default.
- W2071749087 hasRelatedWork W1488165778 @default.
- W2071749087 hasRelatedWork W1992961908 @default.
- W2071749087 hasRelatedWork W2113853643 @default.
- W2071749087 hasRelatedWork W2120337110 @default.
- W2071749087 hasRelatedWork W2145759202 @default.
- W2071749087 hasRelatedWork W2151625750 @default.