Matches in SemOpenAlex for { <https://semopenalex.org/work/W2071761434> ?p ?o ?g. }
- W2071761434 endingPage "331" @default.
- W2071761434 startingPage "319" @default.
- W2071761434 abstract "This paper develops and assesses the performance of a hybrid prediction model using a radial basis function neural network and non-dominated sorting multiobjective genetic algorithm-II (NSGA-II) for various stock market forecasts. The proposed technique simultaneously optimizes two mutually conflicting objectives: the structure (the number of centers in the hidden layer) and the output mean square error (MSE) of the model. The best compromised non-dominated solution-based model was determined from the optimal Pareto front using fuzzy set theory. The performances of this model were evaluated in terms of four different measures using Standard and Poor 500 (S&P500) and Dow Jones Industrial Average (DJIA) stock data. The results of the simulation of the new model demonstrate a prediction performance superior to that of the conventional radial basis function (RBF)-based forecasting model in terms of the mean average percentage error (MAPE), directional accuracy (DA), Thelis’ U and average relative variance (ARV) values." @default.
- W2071761434 created "2016-06-24" @default.
- W2071761434 creator A5014632537 @default.
- W2071761434 creator A5063573474 @default.
- W2071761434 creator A5084704835 @default.
- W2071761434 date "2014-09-01" @default.
- W2071761434 modified "2023-10-14" @default.
- W2071761434 title "On the development and performance evaluation of a multiobjective GA-based RBF adaptive model for the prediction of stock indices" @default.
- W2071761434 cites W1963502807 @default.
- W2071761434 cites W1964965599 @default.
- W2071761434 cites W1965062021 @default.
- W2071761434 cites W1966577984 @default.
- W2071761434 cites W1973043741 @default.
- W2071761434 cites W1978225003 @default.
- W2071761434 cites W1980458013 @default.
- W2071761434 cites W1981469768 @default.
- W2071761434 cites W1985930470 @default.
- W2071761434 cites W1994668012 @default.
- W2071761434 cites W2000490666 @default.
- W2071761434 cites W2001529900 @default.
- W2071761434 cites W2004463884 @default.
- W2071761434 cites W2004735350 @default.
- W2071761434 cites W2008442094 @default.
- W2071761434 cites W2011782945 @default.
- W2071761434 cites W2013036030 @default.
- W2071761434 cites W2014341469 @default.
- W2071761434 cites W2017537474 @default.
- W2071761434 cites W2017812666 @default.
- W2071761434 cites W2024804972 @default.
- W2071761434 cites W2028747913 @default.
- W2071761434 cites W2029921820 @default.
- W2071761434 cites W2034556731 @default.
- W2071761434 cites W2043406008 @default.
- W2071761434 cites W2044861997 @default.
- W2071761434 cites W2045001586 @default.
- W2071761434 cites W2049916782 @default.
- W2071761434 cites W2058092208 @default.
- W2071761434 cites W2059804518 @default.
- W2071761434 cites W2059852492 @default.
- W2071761434 cites W2064395535 @default.
- W2071761434 cites W2071056529 @default.
- W2071761434 cites W2072664345 @default.
- W2071761434 cites W2078368457 @default.
- W2071761434 cites W2079195815 @default.
- W2071761434 cites W2080936024 @default.
- W2071761434 cites W2082558154 @default.
- W2071761434 cites W2085444045 @default.
- W2071761434 cites W2085708398 @default.
- W2071761434 cites W2086694651 @default.
- W2071761434 cites W2094304287 @default.
- W2071761434 cites W2103997983 @default.
- W2071761434 cites W2105217797 @default.
- W2071761434 cites W2121367231 @default.
- W2071761434 cites W2123513648 @default.
- W2071761434 cites W2126105956 @default.
- W2071761434 cites W2142769667 @default.
- W2071761434 cites W2153851210 @default.
- W2071761434 cites W2161205534 @default.
- W2071761434 cites W2162389778 @default.
- W2071761434 cites W2165171393 @default.
- W2071761434 doi "https://doi.org/10.1016/j.jksuci.2013.12.005" @default.
- W2071761434 hasPublicationYear "2014" @default.
- W2071761434 type Work @default.
- W2071761434 sameAs 2071761434 @default.
- W2071761434 citedByCount "14" @default.
- W2071761434 countsByYear W20717614342014 @default.
- W2071761434 countsByYear W20717614342015 @default.
- W2071761434 countsByYear W20717614342016 @default.
- W2071761434 countsByYear W20717614342018 @default.
- W2071761434 countsByYear W20717614342019 @default.
- W2071761434 countsByYear W20717614342021 @default.
- W2071761434 countsByYear W20717614342022 @default.
- W2071761434 countsByYear W20717614342023 @default.
- W2071761434 crossrefType "journal-article" @default.
- W2071761434 hasAuthorship W2071761434A5014632537 @default.
- W2071761434 hasAuthorship W2071761434A5063573474 @default.
- W2071761434 hasAuthorship W2071761434A5084704835 @default.
- W2071761434 hasBestOaLocation W20717614341 @default.
- W2071761434 hasConcept C105795698 @default.
- W2071761434 hasConcept C111696304 @default.
- W2071761434 hasConcept C11413529 @default.
- W2071761434 hasConcept C126255220 @default.
- W2071761434 hasConcept C139945424 @default.
- W2071761434 hasConcept C149782125 @default.
- W2071761434 hasConcept C150217764 @default.
- W2071761434 hasConcept C154945302 @default.
- W2071761434 hasConcept C33923547 @default.
- W2071761434 hasConcept C41008148 @default.
- W2071761434 hasConcept C50644808 @default.
- W2071761434 hasConcept C68781425 @default.
- W2071761434 hasConcept C8880873 @default.
- W2071761434 hasConcept C98856871 @default.
- W2071761434 hasConceptScore W2071761434C105795698 @default.
- W2071761434 hasConceptScore W2071761434C111696304 @default.
- W2071761434 hasConceptScore W2071761434C11413529 @default.
- W2071761434 hasConceptScore W2071761434C126255220 @default.
- W2071761434 hasConceptScore W2071761434C139945424 @default.
- W2071761434 hasConceptScore W2071761434C149782125 @default.