Matches in SemOpenAlex for { <https://semopenalex.org/work/W2071767222> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2071767222 endingPage "405" @default.
- W2071767222 startingPage "373" @default.
- W2071767222 abstract "Increasing the awareness of how incomplete data affects learning and classification accuracy has led to increasing numbers of missing data techniques. This article investigates the robustness and accuracy of seven popular techniques for tolerating incomplete training and test data for different patterns of missing data—different proportions and mechanisms of missing data on resulting tree-based models. The seven missing data techniques were compared by artificially simulating different proportions, patterns, and mechanisms of missing data using 21 complete datasets (i.e., with no missing values) obtained from the University of California, Irvine repository of machine-learning databases (Blake and Merz, 1998). A four-way repeated measures design was employed to analyze the data. The simulation results suggest important differences. All methods have their strengths and weaknesses. However, listwise deletion is substantially inferior to the other six techniques, while multiple imputation, that utilizes the expectation maximization algorithm, represents a superior approach to handling incomplete data. Decision tree single imputation and surrogate variables splitting are more severely impacted by missing values distributed among all attributes compared to when they are only on a single attribute. Otherwise, the imputation—versus model-based imputation procedures gave—reasonably good results although some discrepancies remained. Different techniques for addressing missing values when using decision trees can give substantially diverse results, and must be carefully considered to protect against biases and spurious findings. Multiple imputation should always be used, especially if the data contain many missing values. If few values are missing, any of the missing data techniques might be considered. The choice of technique should be guided by the proportion, pattern, and mechanisms of missing data, especially the latter two. However, the use of older techniques like listwise deletion and mean or mode single imputation is no longer justifiable given the accessibility and ease of use of more advanced techniques, such as multiple imputation and supervised learning imputation." @default.
- W2071767222 created "2016-06-24" @default.
- W2071767222 creator A5073968263 @default.
- W2071767222 date "2009-05-04" @default.
- W2071767222 modified "2023-10-14" @default.
- W2071767222 title "AN EMPIRICAL COMPARISON OF TECHNIQUES FOR HANDLING INCOMPLETE DATA USING DECISION TREES" @default.
- W2071767222 cites W1598553907 @default.
- W2071767222 cites W1983479840 @default.
- W2071767222 cites W2011773465 @default.
- W2071767222 cites W2026525327 @default.
- W2071767222 cites W2031668066 @default.
- W2071767222 cites W2032578483 @default.
- W2071767222 cites W2053742104 @default.
- W2071767222 cites W2058128280 @default.
- W2071767222 cites W2065709315 @default.
- W2071767222 cites W2101796008 @default.
- W2071767222 cites W2118502261 @default.
- W2071767222 cites W2128420091 @default.
- W2071767222 cites W2156267802 @default.
- W2071767222 cites W2157542847 @default.
- W2071767222 cites W2172074277 @default.
- W2071767222 cites W4245971453 @default.
- W2071767222 cites W4247999480 @default.
- W2071767222 cites W4250801571 @default.
- W2071767222 cites W4300187280 @default.
- W2071767222 doi "https://doi.org/10.1080/08839510902872223" @default.
- W2071767222 hasPublicationYear "2009" @default.
- W2071767222 type Work @default.
- W2071767222 sameAs 2071767222 @default.
- W2071767222 citedByCount "100" @default.
- W2071767222 countsByYear W20717672222012 @default.
- W2071767222 countsByYear W20717672222013 @default.
- W2071767222 countsByYear W20717672222014 @default.
- W2071767222 countsByYear W20717672222015 @default.
- W2071767222 countsByYear W20717672222016 @default.
- W2071767222 countsByYear W20717672222017 @default.
- W2071767222 countsByYear W20717672222018 @default.
- W2071767222 countsByYear W20717672222019 @default.
- W2071767222 countsByYear W20717672222020 @default.
- W2071767222 countsByYear W20717672222021 @default.
- W2071767222 countsByYear W20717672222022 @default.
- W2071767222 countsByYear W20717672222023 @default.
- W2071767222 crossrefType "journal-article" @default.
- W2071767222 hasAuthorship W2071767222A5073968263 @default.
- W2071767222 hasBestOaLocation W20717672221 @default.
- W2071767222 hasConcept C105795698 @default.
- W2071767222 hasConcept C119857082 @default.
- W2071767222 hasConcept C120936955 @default.
- W2071767222 hasConcept C124101348 @default.
- W2071767222 hasConcept C154945302 @default.
- W2071767222 hasConcept C2522767166 @default.
- W2071767222 hasConcept C33923547 @default.
- W2071767222 hasConcept C41008148 @default.
- W2071767222 hasConcept C84525736 @default.
- W2071767222 hasConceptScore W2071767222C105795698 @default.
- W2071767222 hasConceptScore W2071767222C119857082 @default.
- W2071767222 hasConceptScore W2071767222C120936955 @default.
- W2071767222 hasConceptScore W2071767222C124101348 @default.
- W2071767222 hasConceptScore W2071767222C154945302 @default.
- W2071767222 hasConceptScore W2071767222C2522767166 @default.
- W2071767222 hasConceptScore W2071767222C33923547 @default.
- W2071767222 hasConceptScore W2071767222C41008148 @default.
- W2071767222 hasConceptScore W2071767222C84525736 @default.
- W2071767222 hasIssue "5" @default.
- W2071767222 hasLocation W20717672221 @default.
- W2071767222 hasLocation W20717672222 @default.
- W2071767222 hasOpenAccess W2071767222 @default.
- W2071767222 hasPrimaryLocation W20717672221 @default.
- W2071767222 hasRelatedWork W1470425429 @default.
- W2071767222 hasRelatedWork W3200719183 @default.
- W2071767222 hasRelatedWork W3210877509 @default.
- W2071767222 hasRelatedWork W4200196661 @default.
- W2071767222 hasRelatedWork W4205478082 @default.
- W2071767222 hasRelatedWork W4205958290 @default.
- W2071767222 hasRelatedWork W4249746146 @default.
- W2071767222 hasRelatedWork W4283016678 @default.
- W2071767222 hasRelatedWork W4306321456 @default.
- W2071767222 hasRelatedWork W4318350883 @default.
- W2071767222 hasVolume "23" @default.
- W2071767222 isParatext "false" @default.
- W2071767222 isRetracted "false" @default.
- W2071767222 magId "2071767222" @default.
- W2071767222 workType "article" @default.