Matches in SemOpenAlex for { <https://semopenalex.org/work/W2071769742> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2071769742 endingPage "428" @default.
- W2071769742 startingPage "387" @default.
- W2071769742 abstract "We consider problems involving semi-infinite cracks in a porous elastic material. The cracks are loaded with a time dependent internal stress, or pore pressure. Either mixed or unmixed pore pressure boundary conditions on the fracture plane are considered. An asymptotic procedure that partly uncouples the elastic and fluid responses is used, allowing an asymptotic expression for the stress intensity factors as time progresses to be obtained. The method allows the physical processes involved at the crack tip and their interactions to be studied. This is an advance on previous methods where results were obtained in Laplace transform space and inverted numerically to obtain real-time solutions. The crack problems are formulated using distributions of dislocations (and pore pressure gradient discontinuities when necessary) to generate integral equations of the Wiener—Hopf type. The resulting functional equations are, of course, identical to those considered by C. Atkinson and R. V. Craster, but with the alternative formulation we develop an asymptotic procedure which should be applicable to other problems (e.g. finite length cracks). This asymptotic procedure can be used to derive asymptotic expansions for more complicated loadings when the numerical effort involved in evaluating results would be excessive. A large-time asymptotic method is also briefly described which complements the small-time method. The operators for poroelastic crack problems are inverted for a particular loading; the reciprocal theorem for poroelasticity is used together with eigensolutions of the fundamental problems to deduce the stress (or where necessary the pore pressure gradient) intensity factors for any loading. These formulae extend previous results allowing a wide range of different loadings to be considered. As an example, the stress intensity factor for a point loaded crack is derived and the asymptotic method is applied to this problem to derive a simple asymptotic formula. Finally, an invariant integral, which is a generalization of the Eshelby energy-momentum tensor, is used to derive integral identities which serve as a check on the intensity factors in some situations." @default.
- W2071769742 created "2016-06-24" @default.
- W2071769742 creator A5035687670 @default.
- W2071769742 creator A5052030337 @default.
- W2071769742 date "1994-02-15" @default.
- W2071769742 modified "2023-09-23" @default.
- W2071769742 title "Crack problems in a poroelastic medium: an asymptotic approach" @default.
- W2071769742 cites W1990401345 @default.
- W2071769742 cites W1995507435 @default.
- W2071769742 cites W2005669138 @default.
- W2071769742 cites W2005888061 @default.
- W2071769742 cites W2010804528 @default.
- W2071769742 cites W2020914482 @default.
- W2071769742 cites W2022619925 @default.
- W2071769742 cites W2036786929 @default.
- W2071769742 cites W2043175323 @default.
- W2071769742 cites W2057342974 @default.
- W2071769742 cites W2058043530 @default.
- W2071769742 cites W2062377882 @default.
- W2071769742 cites W2062653750 @default.
- W2071769742 cites W2064325120 @default.
- W2071769742 cites W2073151037 @default.
- W2071769742 cites W2076767389 @default.
- W2071769742 cites W2077266613 @default.
- W2071769742 cites W2127744951 @default.
- W2071769742 cites W2135094424 @default.
- W2071769742 cites W2161118098 @default.
- W2071769742 cites W4240837102 @default.
- W2071769742 doi "https://doi.org/10.1098/rsta.1994.0026" @default.
- W2071769742 hasPublicationYear "1994" @default.
- W2071769742 type Work @default.
- W2071769742 sameAs 2071769742 @default.
- W2071769742 citedByCount "6" @default.
- W2071769742 countsByYear W20717697422012 @default.
- W2071769742 countsByYear W20717697422018 @default.
- W2071769742 countsByYear W20717697422019 @default.
- W2071769742 crossrefType "journal-article" @default.
- W2071769742 hasAuthorship W2071769742A5035687670 @default.
- W2071769742 hasAuthorship W2071769742A5052030337 @default.
- W2071769742 hasConcept C105569014 @default.
- W2071769742 hasConcept C121332964 @default.
- W2071769742 hasConcept C127413603 @default.
- W2071769742 hasConcept C134306372 @default.
- W2071769742 hasConcept C135628077 @default.
- W2071769742 hasConcept C15627037 @default.
- W2071769742 hasConcept C159985019 @default.
- W2071769742 hasConcept C181965411 @default.
- W2071769742 hasConcept C182310444 @default.
- W2071769742 hasConcept C192562407 @default.
- W2071769742 hasConcept C205147927 @default.
- W2071769742 hasConcept C29320194 @default.
- W2071769742 hasConcept C33923547 @default.
- W2071769742 hasConcept C54303661 @default.
- W2071769742 hasConcept C57879066 @default.
- W2071769742 hasConcept C59085676 @default.
- W2071769742 hasConcept C6648577 @default.
- W2071769742 hasConcept C66938386 @default.
- W2071769742 hasConcept C97937538 @default.
- W2071769742 hasConceptScore W2071769742C105569014 @default.
- W2071769742 hasConceptScore W2071769742C121332964 @default.
- W2071769742 hasConceptScore W2071769742C127413603 @default.
- W2071769742 hasConceptScore W2071769742C134306372 @default.
- W2071769742 hasConceptScore W2071769742C135628077 @default.
- W2071769742 hasConceptScore W2071769742C15627037 @default.
- W2071769742 hasConceptScore W2071769742C159985019 @default.
- W2071769742 hasConceptScore W2071769742C181965411 @default.
- W2071769742 hasConceptScore W2071769742C182310444 @default.
- W2071769742 hasConceptScore W2071769742C192562407 @default.
- W2071769742 hasConceptScore W2071769742C205147927 @default.
- W2071769742 hasConceptScore W2071769742C29320194 @default.
- W2071769742 hasConceptScore W2071769742C33923547 @default.
- W2071769742 hasConceptScore W2071769742C54303661 @default.
- W2071769742 hasConceptScore W2071769742C57879066 @default.
- W2071769742 hasConceptScore W2071769742C59085676 @default.
- W2071769742 hasConceptScore W2071769742C6648577 @default.
- W2071769742 hasConceptScore W2071769742C66938386 @default.
- W2071769742 hasConceptScore W2071769742C97937538 @default.
- W2071769742 hasIssue "1680" @default.
- W2071769742 hasLocation W20717697421 @default.
- W2071769742 hasOpenAccess W2071769742 @default.
- W2071769742 hasPrimaryLocation W20717697421 @default.
- W2071769742 hasRelatedWork W1509744520 @default.
- W2071769742 hasRelatedWork W1985899928 @default.
- W2071769742 hasRelatedWork W1995507435 @default.
- W2071769742 hasRelatedWork W2071769742 @default.
- W2071769742 hasRelatedWork W2116701829 @default.
- W2071769742 hasRelatedWork W2127744951 @default.
- W2071769742 hasRelatedWork W2377825576 @default.
- W2071769742 hasRelatedWork W2385859117 @default.
- W2071769742 hasRelatedWork W2387201422 @default.
- W2071769742 hasRelatedWork W4302307838 @default.
- W2071769742 hasVolume "346" @default.
- W2071769742 isParatext "false" @default.
- W2071769742 isRetracted "false" @default.
- W2071769742 magId "2071769742" @default.
- W2071769742 workType "article" @default.