Matches in SemOpenAlex for { <https://semopenalex.org/work/W2071777643> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2071777643 endingPage "177" @default.
- W2071777643 startingPage "149" @default.
- W2071777643 abstract "A core–annular flow, the concurrent axial flow of two immiscible fluids in a circular tube or pore with one fluid in the core and the other in the wetting annular region, is frequently used to model technologically important flows, e.g. in liquid–liquid displacements in secondary oil recovery. Most of the existing literature assumes that the pores in which such flows occur are uniform circular cylinders, and examine the interfacial stability of such systems as a function of fluid and interfacial properties. Since real rock pores possess a more complex geometry, the companion paper examined the linear stability of core–annular flows in axisymmetric, corrugated pores in the limit of asymptotically weak corrugation. It found that short-wave disturbances that were stable in straight tubes could couple to the wall's periodicity to excite unstable long waves. In this paper, we follow the evolution of the axisymmetric, linearly unstable waves for fluids of equal densities in a corrugated tube into the weakly nonlinear regime. Here, we ask whether this continual generation of new disturbances by the coupling to the wall's periodicity can overcome the nonlinear saturation mechanism that relies on the nonlinear (kinematic-condition-derived) wave steepening of the Kuramoto–Sivashinsky (KS) equation. If it cannot, and the unstable waves still saturate, then do these additional excited waves make the KS solutions more likely to be chaotic, or does the dispersion introduced into the growth rate correction by capillarity serve to regularize otherwise chaotic motions? We find that in the usual strong surface tension limit, the saturation mechanism of the KS mechanism remains able to saturate all disturbances. Moreover, an additional capillary-derived nonlinear term seems to favour regular travelling waves over chaos, and corrugation adds a temporal periodicity to the waves associated with their periodical traversing of the wall's crests and troughs. For even larger surface tensions, capillarity dominates over convection and a weakly nonlinear version of Hammond's no-flow equation results; this equation, with or without corrugation, suggests further growth. Finally, for a weaker surface tension, the leading-order base flow interface follows the wall's shape. The corrugation-derived excited waves appear able to push an otherwise regular travelling wave solution to KS to become chaotic, whereas its dispersive properties in this limit seem insufficiently strong to regularize chaotic motions." @default.
- W2071777643 created "2016-06-24" @default.
- W2071777643 creator A5032869746 @default.
- W2071777643 creator A5047035108 @default.
- W2071777643 date "2002-09-10" @default.
- W2071777643 modified "2023-10-14" @default.
- W2071777643 title "The weakly nonlinear interfacial stability of a core–annular flow in a corrugated tube" @default.
- W2071777643 doi "https://doi.org/10.1017/s0022112002001222" @default.
- W2071777643 hasPublicationYear "2002" @default.
- W2071777643 type Work @default.
- W2071777643 sameAs 2071777643 @default.
- W2071777643 citedByCount "22" @default.
- W2071777643 countsByYear W20717776432012 @default.
- W2071777643 countsByYear W20717776432014 @default.
- W2071777643 countsByYear W20717776432016 @default.
- W2071777643 countsByYear W20717776432017 @default.
- W2071777643 countsByYear W20717776432018 @default.
- W2071777643 crossrefType "journal-article" @default.
- W2071777643 hasAuthorship W2071777643A5032869746 @default.
- W2071777643 hasAuthorship W2071777643A5047035108 @default.
- W2071777643 hasConcept C121332964 @default.
- W2071777643 hasConcept C158622935 @default.
- W2071777643 hasConcept C159985019 @default.
- W2071777643 hasConcept C192562407 @default.
- W2071777643 hasConcept C207821765 @default.
- W2071777643 hasConcept C2777551473 @default.
- W2071777643 hasConcept C33026886 @default.
- W2071777643 hasConcept C38349280 @default.
- W2071777643 hasConcept C43466630 @default.
- W2071777643 hasConcept C57879066 @default.
- W2071777643 hasConcept C62520636 @default.
- W2071777643 hasConcept C74650414 @default.
- W2071777643 hasConceptScore W2071777643C121332964 @default.
- W2071777643 hasConceptScore W2071777643C158622935 @default.
- W2071777643 hasConceptScore W2071777643C159985019 @default.
- W2071777643 hasConceptScore W2071777643C192562407 @default.
- W2071777643 hasConceptScore W2071777643C207821765 @default.
- W2071777643 hasConceptScore W2071777643C2777551473 @default.
- W2071777643 hasConceptScore W2071777643C33026886 @default.
- W2071777643 hasConceptScore W2071777643C38349280 @default.
- W2071777643 hasConceptScore W2071777643C43466630 @default.
- W2071777643 hasConceptScore W2071777643C57879066 @default.
- W2071777643 hasConceptScore W2071777643C62520636 @default.
- W2071777643 hasConceptScore W2071777643C74650414 @default.
- W2071777643 hasLocation W20717776431 @default.
- W2071777643 hasOpenAccess W2071777643 @default.
- W2071777643 hasPrimaryLocation W20717776431 @default.
- W2071777643 hasRelatedWork W1089572599 @default.
- W2071777643 hasRelatedWork W1533375940 @default.
- W2071777643 hasRelatedWork W1971489147 @default.
- W2071777643 hasRelatedWork W2016360099 @default.
- W2071777643 hasRelatedWork W2040797929 @default.
- W2071777643 hasRelatedWork W2046460654 @default.
- W2071777643 hasRelatedWork W2046617257 @default.
- W2071777643 hasRelatedWork W2080527204 @default.
- W2071777643 hasRelatedWork W2326209369 @default.
- W2071777643 hasRelatedWork W2789270050 @default.
- W2071777643 hasVolume "466" @default.
- W2071777643 isParatext "false" @default.
- W2071777643 isRetracted "false" @default.
- W2071777643 magId "2071777643" @default.
- W2071777643 workType "article" @default.