Matches in SemOpenAlex for { <https://semopenalex.org/work/W2071785132> ?p ?o ?g. }
- W2071785132 endingPage "27" @default.
- W2071785132 startingPage "11" @default.
- W2071785132 abstract "While there have been many studies analyzing crash severity, few studies have accounted for unobserved heterogeneity and compared different crash severity models. The objective of this paper is to investigate the differences between two preferred methods for accommodating individual unobserved heterogeneity, the mixed logit and latent class methods, in exploring the relationship between heavy truck crash severity and its contributing factors. To achieve this, a large sample of crash data on multiple vehicle crashes involving a heavy truck on public roadways in Iowa from 2007 to 2012 was collected. The comparison of the two methods lied on model fit, inferences, and predicted crash severity outcome probabilities. The results suggested a slight superiority of the latent class method in terms of model fit; however, the mixed logit predicted probabilities for all three levels of injury severities were closer (on average) to the observations than the ones predicted by the latent class model. Only a few notable differences in the inferences were found between the two models." @default.
- W2071785132 created "2016-06-24" @default.
- W2071785132 creator A5011908634 @default.
- W2071785132 creator A5015926456 @default.
- W2071785132 creator A5016260104 @default.
- W2071785132 creator A5033783416 @default.
- W2071785132 date "2014-10-01" @default.
- W2071785132 modified "2023-10-14" @default.
- W2071785132 title "A comparison of the mixed logit and latent class methods for crash severity analysis" @default.
- W2071785132 cites W1896794844 @default.
- W2071785132 cites W1966886420 @default.
- W2071785132 cites W1977619318 @default.
- W2071785132 cites W1980399291 @default.
- W2071785132 cites W1980746151 @default.
- W2071785132 cites W1980888841 @default.
- W2071785132 cites W1980975343 @default.
- W2071785132 cites W1981970415 @default.
- W2071785132 cites W1983492960 @default.
- W2071785132 cites W1984074752 @default.
- W2071785132 cites W1988201075 @default.
- W2071785132 cites W1989476346 @default.
- W2071785132 cites W1997846305 @default.
- W2071785132 cites W2008565704 @default.
- W2071785132 cites W2008909284 @default.
- W2071785132 cites W2012838480 @default.
- W2071785132 cites W2013732826 @default.
- W2071785132 cites W2020549527 @default.
- W2071785132 cites W2024610679 @default.
- W2071785132 cites W2025200414 @default.
- W2071785132 cites W2029807096 @default.
- W2071785132 cites W2036197159 @default.
- W2071785132 cites W2036223982 @default.
- W2071785132 cites W2037048038 @default.
- W2071785132 cites W2037787252 @default.
- W2071785132 cites W2039606045 @default.
- W2071785132 cites W2040418644 @default.
- W2071785132 cites W2042744865 @default.
- W2071785132 cites W2046231891 @default.
- W2071785132 cites W2049329064 @default.
- W2071785132 cites W2053037931 @default.
- W2071785132 cites W2056381265 @default.
- W2071785132 cites W2063584172 @default.
- W2071785132 cites W2067710544 @default.
- W2071785132 cites W2067948694 @default.
- W2071785132 cites W2068035155 @default.
- W2071785132 cites W2076978163 @default.
- W2071785132 cites W2077345107 @default.
- W2071785132 cites W2083006184 @default.
- W2071785132 cites W2085228654 @default.
- W2071785132 cites W2086927126 @default.
- W2071785132 cites W2088262634 @default.
- W2071785132 cites W2092497565 @default.
- W2071785132 cites W2100936928 @default.
- W2071785132 cites W2108165405 @default.
- W2071785132 cites W2118938645 @default.
- W2071785132 cites W2132735659 @default.
- W2071785132 cites W2139026550 @default.
- W2071785132 cites W2151804157 @default.
- W2071785132 doi "https://doi.org/10.1016/j.amar.2014.09.002" @default.
- W2071785132 hasPublicationYear "2014" @default.
- W2071785132 type Work @default.
- W2071785132 sameAs 2071785132 @default.
- W2071785132 citedByCount "104" @default.
- W2071785132 countsByYear W20717851322014 @default.
- W2071785132 countsByYear W20717851322015 @default.
- W2071785132 countsByYear W20717851322016 @default.
- W2071785132 countsByYear W20717851322017 @default.
- W2071785132 countsByYear W20717851322018 @default.
- W2071785132 countsByYear W20717851322019 @default.
- W2071785132 countsByYear W20717851322020 @default.
- W2071785132 countsByYear W20717851322021 @default.
- W2071785132 countsByYear W20717851322022 @default.
- W2071785132 countsByYear W20717851322023 @default.
- W2071785132 crossrefType "journal-article" @default.
- W2071785132 hasAuthorship W2071785132A5011908634 @default.
- W2071785132 hasAuthorship W2071785132A5015926456 @default.
- W2071785132 hasAuthorship W2071785132A5016260104 @default.
- W2071785132 hasAuthorship W2071785132A5033783416 @default.
- W2071785132 hasConcept C105795698 @default.
- W2071785132 hasConcept C127413603 @default.
- W2071785132 hasConcept C140331021 @default.
- W2071785132 hasConcept C146978453 @default.
- W2071785132 hasConcept C149782125 @default.
- W2071785132 hasConcept C151956035 @default.
- W2071785132 hasConcept C183469790 @default.
- W2071785132 hasConcept C185592680 @default.
- W2071785132 hasConcept C198531522 @default.
- W2071785132 hasConcept C199360897 @default.
- W2071785132 hasConcept C3017944768 @default.
- W2071785132 hasConcept C33923547 @default.
- W2071785132 hasConcept C41008148 @default.
- W2071785132 hasConcept C43617362 @default.
- W2071785132 hasConcept C52121051 @default.
- W2071785132 hasConcept C70727504 @default.
- W2071785132 hasConcept C71924100 @default.
- W2071785132 hasConcept C95057490 @default.
- W2071785132 hasConcept C99454951 @default.
- W2071785132 hasConceptScore W2071785132C105795698 @default.