Matches in SemOpenAlex for { <https://semopenalex.org/work/W2071829412> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2071829412 endingPage "864" @default.
- W2071829412 startingPage "852" @default.
- W2071829412 abstract "In this paper we present novel ensemble classifier architectures and investigate their influence for offline cursive character recognition. Cursive characters are represented by feature sets that portray different aspects of character images for recognition purposes. The recognition accuracy can be improved by training ensemble of classifiers on the feature sets. Given the feature sets and the base classifiers, we have developed multiple ensemble classifier compositions under four architectures. The first three architectures are based on the use of multiple feature sets whereas the fourth architecture is based on the use of a unique feature set. Type-1 architecture is composed of homogeneous base classifiers and Type-2 architecture is constructed using heterogeneous base classifiers. Type-3 architecture is based on hierarchical fusion of decisions. In Type-4 architecture a unique feature set is learned by a set of homogeneous base classifiers with different learning parameters. The experimental results demonstrate that the recognition accuracy achieved using the proposed ensemble classifier (with best composition of base classifiers and feature sets) is better than the existing recognition accuracies for offline cursive character recognition." @default.
- W2071829412 created "2016-06-24" @default.
- W2071829412 creator A5000151716 @default.
- W2071829412 creator A5026528338 @default.
- W2071829412 date "2013-07-01" @default.
- W2071829412 modified "2023-10-18" @default.
- W2071829412 title "Effect of ensemble classifier composition on offline cursive character recognition" @default.
- W2071829412 cites W1505910962 @default.
- W2071829412 cites W1966049321 @default.
- W2071829412 cites W1988790447 @default.
- W2071829412 cites W2013162726 @default.
- W2071829412 cites W2032487560 @default.
- W2071829412 cites W2034018567 @default.
- W2071829412 cites W2047923155 @default.
- W2071829412 cites W2048295125 @default.
- W2071829412 cites W2082410686 @default.
- W2071829412 cites W2087136607 @default.
- W2071829412 cites W2103346566 @default.
- W2071829412 cites W2105023627 @default.
- W2071829412 cites W2111094913 @default.
- W2071829412 cites W2115629999 @default.
- W2071829412 cites W2119761601 @default.
- W2071829412 cites W2147782381 @default.
- W2071829412 cites W2156050321 @default.
- W2071829412 cites W2162770305 @default.
- W2071829412 cites W2167917621 @default.
- W2071829412 cites W2303931467 @default.
- W2071829412 cites W29074854 @default.
- W2071829412 cites W2911964244 @default.
- W2071829412 cites W3004732066 @default.
- W2071829412 cites W4212883601 @default.
- W2071829412 doi "https://doi.org/10.1016/j.ipm.2012.12.010" @default.
- W2071829412 hasPublicationYear "2013" @default.
- W2071829412 type Work @default.
- W2071829412 sameAs 2071829412 @default.
- W2071829412 citedByCount "24" @default.
- W2071829412 countsByYear W20718294122013 @default.
- W2071829412 countsByYear W20718294122014 @default.
- W2071829412 countsByYear W20718294122015 @default.
- W2071829412 countsByYear W20718294122016 @default.
- W2071829412 countsByYear W20718294122017 @default.
- W2071829412 countsByYear W20718294122018 @default.
- W2071829412 countsByYear W20718294122019 @default.
- W2071829412 countsByYear W20718294122020 @default.
- W2071829412 countsByYear W20718294122021 @default.
- W2071829412 countsByYear W20718294122022 @default.
- W2071829412 countsByYear W20718294122023 @default.
- W2071829412 crossrefType "journal-article" @default.
- W2071829412 hasAuthorship W2071829412A5000151716 @default.
- W2071829412 hasAuthorship W2071829412A5026528338 @default.
- W2071829412 hasConcept C115961682 @default.
- W2071829412 hasConcept C153180895 @default.
- W2071829412 hasConcept C154945302 @default.
- W2071829412 hasConcept C204321447 @default.
- W2071829412 hasConcept C2778943297 @default.
- W2071829412 hasConcept C28490314 @default.
- W2071829412 hasConcept C2987247673 @default.
- W2071829412 hasConcept C41008148 @default.
- W2071829412 hasConcept C95623464 @default.
- W2071829412 hasConceptScore W2071829412C115961682 @default.
- W2071829412 hasConceptScore W2071829412C153180895 @default.
- W2071829412 hasConceptScore W2071829412C154945302 @default.
- W2071829412 hasConceptScore W2071829412C204321447 @default.
- W2071829412 hasConceptScore W2071829412C2778943297 @default.
- W2071829412 hasConceptScore W2071829412C28490314 @default.
- W2071829412 hasConceptScore W2071829412C2987247673 @default.
- W2071829412 hasConceptScore W2071829412C41008148 @default.
- W2071829412 hasConceptScore W2071829412C95623464 @default.
- W2071829412 hasIssue "4" @default.
- W2071829412 hasLocation W20718294121 @default.
- W2071829412 hasOpenAccess W2071829412 @default.
- W2071829412 hasPrimaryLocation W20718294121 @default.
- W2071829412 hasRelatedWork W2001652754 @default.
- W2071829412 hasRelatedWork W2379065761 @default.
- W2071829412 hasRelatedWork W2549006548 @default.
- W2071829412 hasRelatedWork W2784352036 @default.
- W2071829412 hasRelatedWork W2807311372 @default.
- W2071829412 hasRelatedWork W2972035100 @default.
- W2071829412 hasRelatedWork W3043252291 @default.
- W2071829412 hasRelatedWork W3107474891 @default.
- W2071829412 hasRelatedWork W4214932115 @default.
- W2071829412 hasRelatedWork W3158004940 @default.
- W2071829412 hasVolume "49" @default.
- W2071829412 isParatext "false" @default.
- W2071829412 isRetracted "false" @default.
- W2071829412 magId "2071829412" @default.
- W2071829412 workType "article" @default.