Matches in SemOpenAlex for { <https://semopenalex.org/work/W2072128103> ?p ?o ?g. }
- W2072128103 abstract "Can machine learning deliver AI? Theoretical results, inspiration from the brain and cognition, as well as machine learning experiments suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one would need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers, graphical models with many levels of latent variables, or in complicated propositional formulae re-using many sub-formulae. Each level of the architecture represents features at a different level of abstraction, defined as a composition of lower-level features. Searching the parameter space of deep architectures is a difficult task, but new algorithms have been discovered and a new sub-area has emerged in the machine learning community since 2006, following these discoveries. Learning algorithms such as those for Deep Belief Networks and other related unsupervised learning algorithms have recently been proposed to train deep architectures, yielding exciting results and beating the state-of-the-art in certain areas. Learning Deep Architectures for AI discusses the motivations for and principles of learning algorithms for deep architectures. By analyzing and comparing recent results with different learning algorithms for deep architectures, explanations for their success are proposed and discussed, highlighting challenges and suggesting avenues for future explorations in this area." @default.
- W2072128103 created "2016-06-24" @default.
- W2072128103 creator A5086198262 @default.
- W2072128103 date "2009-01-01" @default.
- W2072128103 modified "2023-10-16" @default.
- W2072128103 title "Learning Deep Architectures for AI" @default.
- W2072128103 cites W10021998 @default.
- W2072128103 cites W108809533 @default.
- W2072128103 cites W109020964 @default.
- W2072128103 cites W118302298 @default.
- W2072128103 cites W137941959 @default.
- W2072128103 cites W145476170 @default.
- W2072128103 cites W1485231155 @default.
- W2072128103 cites W1491300635 @default.
- W2072128103 cites W1498436455 @default.
- W2072128103 cites W1500452410 @default.
- W2072128103 cites W1501567504 @default.
- W2072128103 cites W1502609557 @default.
- W2072128103 cites W1505878979 @default.
- W2072128103 cites W1509703770 @default.
- W2072128103 cites W1515020792 @default.
- W2072128103 cites W1515851193 @default.
- W2072128103 cites W1517585663 @default.
- W2072128103 cites W1520179993 @default.
- W2072128103 cites W1520448186 @default.
- W2072128103 cites W1526741802 @default.
- W2072128103 cites W1533169541 @default.
- W2072128103 cites W1543614656 @default.
- W2072128103 cites W1544966837 @default.
- W2072128103 cites W1547224907 @default.
- W2072128103 cites W1547547196 @default.
- W2072128103 cites W1548802052 @default.
- W2072128103 cites W1567512734 @default.
- W2072128103 cites W1576278180 @default.
- W2072128103 cites W1578212128 @default.
- W2072128103 cites W1589277047 @default.
- W2072128103 cites W1593057674 @default.
- W2072128103 cites W1594031697 @default.
- W2072128103 cites W1604938182 @default.
- W2072128103 cites W1638203394 @default.
- W2072128103 cites W1654789990 @default.
- W2072128103 cites W1746680969 @default.
- W2072128103 cites W1802356529 @default.
- W2072128103 cites W1813659000 @default.
- W2072128103 cites W181520010 @default.
- W2072128103 cites W1836632961 @default.
- W2072128103 cites W189596042 @default.
- W2072128103 cites W1930624869 @default.
- W2072128103 cites W1949116567 @default.
- W2072128103 cites W1964155876 @default.
- W2072128103 cites W1964514974 @default.
- W2072128103 cites W1970197763 @default.
- W2072128103 cites W1971844566 @default.
- W2072128103 cites W1977263277 @default.
- W2072128103 cites W1978381081 @default.
- W2072128103 cites W1981814724 @default.
- W2072128103 cites W1984820433 @default.
- W2072128103 cites W1993845689 @default.
- W2072128103 cites W1994197834 @default.
- W2072128103 cites W1995341919 @default.
- W2072128103 cites W2001141328 @default.
- W2072128103 cites W2004586880 @default.
- W2072128103 cites W2005097301 @default.
- W2072128103 cites W2007347635 @default.
- W2072128103 cites W2013391942 @default.
- W2072128103 cites W2013450515 @default.
- W2072128103 cites W2015093644 @default.
- W2072128103 cites W2017257315 @default.
- W2072128103 cites W2020999234 @default.
- W2072128103 cites W2024060531 @default.
- W2072128103 cites W2025768430 @default.
- W2072128103 cites W2026799324 @default.
- W2072128103 cites W2029949252 @default.
- W2072128103 cites W2033012377 @default.
- W2072128103 cites W2042422091 @default.
- W2072128103 cites W2042492924 @default.
- W2072128103 cites W2045924252 @default.
- W2072128103 cites W2051144468 @default.
- W2072128103 cites W205159212 @default.
- W2072128103 cites W2053186076 @default.
- W2072128103 cites W2056590938 @default.
- W2072128103 cites W2059448777 @default.
- W2072128103 cites W2064630666 @default.
- W2072128103 cites W2071128523 @default.
- W2072128103 cites W2073257493 @default.
- W2072128103 cites W2075187489 @default.
- W2072128103 cites W2079182758 @default.
- W2072128103 cites W2083380015 @default.
- W2072128103 cites W2087347434 @default.
- W2072128103 cites W2088032561 @default.
- W2072128103 cites W2088986191 @default.
- W2072128103 cites W2091812280 @default.
- W2072128103 cites W2092650846 @default.
- W2072128103 cites W2095172966 @default.
- W2072128103 cites W2095461998 @default.
- W2072128103 cites W2096192494 @default.
- W2072128103 cites W2097009961 @default.
- W2072128103 cites W2099866409 @default.
- W2072128103 cites W2100495367 @default.
- W2072128103 cites W2101926813 @default.