Matches in SemOpenAlex for { <https://semopenalex.org/work/W2072188503> ?p ?o ?g. }
- W2072188503 endingPage "157" @default.
- W2072188503 startingPage "148" @default.
- W2072188503 abstract "Modern machine learning algorithms are increasingly being used in neuroimaging studies, such as the prediction of Alzheimer's disease (AD) from structural MRI. However, finding a good representation for multivariate brain MRI features in which their essential structure is revealed and easily extractable has been difficult. We report a successful application of a machine learning framework that significantly improved the use of brain MRI for predictions. Specifically, we used the unsupervised learning algorithm of local linear embedding (LLE) to transform multivariate MRI data of regional brain volume and cortical thickness to a locally linear space with fewer dimensions, while also utilizing the global nonlinear data structure. The embedded brain features were then used to train a classifier for predicting future conversion to AD based on a baseline MRI. We tested the approach on 413 individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI) who had baseline MRI scans and complete clinical follow-ups over 3 years with the following diagnoses: cognitive normal (CN; n=137), stable mild cognitive impairment (s-MCI; n=93), MCI converters to AD (c-MCI, n=97), and AD (n=86). We found that classifications using embedded MRI features generally outperformed (p<0.05) classifications using the original features directly. Moreover, the improvement from LLE was not limited to a particular classifier but worked equally well for regularized logistic regressions, support vector machines, and linear discriminant analysis. Most strikingly, using LLE significantly improved (p=0.007) predictions of MCI subjects who converted to AD and those who remained stable (accuracy/sensitivity/specificity: =0.68/0.80/0.56). In contrast, predictions using the original features performed not better than by chance (accuracy/sensitivity/specificity: =0.56/0.65/0.46). In conclusion, LLE is a very effective tool for classification studies of AD using multivariate MRI data. The improvement in predicting conversion to AD in MCI could have important implications for health management and for powering therapeutic trials by targeting non-demented subjects who later convert to AD." @default.
- W2072188503 created "2016-06-24" @default.
- W2072188503 creator A5009052142 @default.
- W2072188503 creator A5021687717 @default.
- W2072188503 creator A5043086041 @default.
- W2072188503 creator A5044485966 @default.
- W2072188503 date "2013-12-01" @default.
- W2072188503 modified "2023-10-16" @default.
- W2072188503 title "Locally linear embedding (LLE) for MRI based Alzheimer's disease classification" @default.
- W2072188503 cites W1483555958 @default.
- W2072188503 cites W1570913002 @default.
- W2072188503 cites W1847168837 @default.
- W2072188503 cites W1970798317 @default.
- W2072188503 cites W1987011701 @default.
- W2072188503 cites W1991952617 @default.
- W2072188503 cites W1992054897 @default.
- W2072188503 cites W1992395739 @default.
- W2072188503 cites W1995277044 @default.
- W2072188503 cites W2001141328 @default.
- W2072188503 cites W2001639524 @default.
- W2072188503 cites W2001648635 @default.
- W2072188503 cites W2004108970 @default.
- W2072188503 cites W2004293194 @default.
- W2072188503 cites W2019583087 @default.
- W2072188503 cites W2020149073 @default.
- W2072188503 cites W2024719735 @default.
- W2072188503 cites W2027230374 @default.
- W2072188503 cites W2053186076 @default.
- W2072188503 cites W2056940464 @default.
- W2072188503 cites W2059658584 @default.
- W2072188503 cites W2078524519 @default.
- W2072188503 cites W2078998718 @default.
- W2072188503 cites W2079484785 @default.
- W2072188503 cites W2084358449 @default.
- W2072188503 cites W2085843633 @default.
- W2072188503 cites W2100221277 @default.
- W2072188503 cites W2100495423 @default.
- W2072188503 cites W2101751741 @default.
- W2072188503 cites W2102508963 @default.
- W2072188503 cites W2107564884 @default.
- W2072188503 cites W2111913931 @default.
- W2072188503 cites W2113127248 @default.
- W2072188503 cites W2118527389 @default.
- W2072188503 cites W2122320288 @default.
- W2072188503 cites W2128251808 @default.
- W2072188503 cites W2128330514 @default.
- W2072188503 cites W2133059825 @default.
- W2072188503 cites W2139886607 @default.
- W2072188503 cites W2146089088 @default.
- W2072188503 cites W2148601182 @default.
- W2072188503 cites W2151130155 @default.
- W2072188503 cites W2153171432 @default.
- W2072188503 cites W2154758450 @default.
- W2072188503 cites W2155164847 @default.
- W2072188503 cites W2160034813 @default.
- W2072188503 cites W2165844321 @default.
- W2072188503 cites W2171380313 @default.
- W2072188503 cites W4239510810 @default.
- W2072188503 cites W4294541781 @default.
- W2072188503 doi "https://doi.org/10.1016/j.neuroimage.2013.06.033" @default.
- W2072188503 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3815961" @default.
- W2072188503 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23792982" @default.
- W2072188503 hasPublicationYear "2013" @default.
- W2072188503 type Work @default.
- W2072188503 sameAs 2072188503 @default.
- W2072188503 citedByCount "125" @default.
- W2072188503 countsByYear W20721885032013 @default.
- W2072188503 countsByYear W20721885032014 @default.
- W2072188503 countsByYear W20721885032015 @default.
- W2072188503 countsByYear W20721885032016 @default.
- W2072188503 countsByYear W20721885032017 @default.
- W2072188503 countsByYear W20721885032018 @default.
- W2072188503 countsByYear W20721885032019 @default.
- W2072188503 countsByYear W20721885032020 @default.
- W2072188503 countsByYear W20721885032021 @default.
- W2072188503 countsByYear W20721885032022 @default.
- W2072188503 countsByYear W20721885032023 @default.
- W2072188503 crossrefType "journal-article" @default.
- W2072188503 hasAuthorship W2072188503A5009052142 @default.
- W2072188503 hasAuthorship W2072188503A5021687717 @default.
- W2072188503 hasAuthorship W2072188503A5043086041 @default.
- W2072188503 hasAuthorship W2072188503A5044485966 @default.
- W2072188503 hasBestOaLocation W20721885032 @default.
- W2072188503 hasConcept C119857082 @default.
- W2072188503 hasConcept C12267149 @default.
- W2072188503 hasConcept C139532973 @default.
- W2072188503 hasConcept C142724271 @default.
- W2072188503 hasConcept C151956035 @default.
- W2072188503 hasConcept C153180895 @default.
- W2072188503 hasConcept C154945302 @default.
- W2072188503 hasConcept C15744967 @default.
- W2072188503 hasConcept C161584116 @default.
- W2072188503 hasConcept C169760540 @default.
- W2072188503 hasConcept C2778373026 @default.
- W2072188503 hasConcept C2779134260 @default.
- W2072188503 hasConcept C41008148 @default.
- W2072188503 hasConcept C502032728 @default.
- W2072188503 hasConcept C534262118 @default.