Matches in SemOpenAlex for { <https://semopenalex.org/work/W2072352241> ?p ?o ?g. }
- W2072352241 endingPage "082104" @default.
- W2072352241 startingPage "082104" @default.
- W2072352241 abstract "Purpose: Clinical QA in teletherapy as well as the characterization of experimental radiation sources for future medical applications requires effective methods for measuring three-dimensional (3D) dose distributions generated in a water-equivalent medium. Current dosimeters based on ionization chambers, diodes, thermoluminescence detectors, radiochromic films, or polymer gels exhibit various drawbacks: High quality 3D dose determination is either very sophisticated and expensive or requires high amounts of effort and time for the preparation or read out. New detectors based on scintillator blocks in combination with optical tomography are studied, since they have the potential to facilitate the desired cost-effective, transportable, and long-term stable dosimetry system that is able to determine 3D dose distributions with high spatial resolution in a short time. Methods: A portable detector prototype was set up based on a plastic scintillator block and four digital cameras. During irradiation the scintillator emits light, which is detected by the fixed cameras. The light distribution is then reconstructed by optical tomography, using maximum-likelihood expectation maximization. The result of the reconstruction approximates the 3D dose distribution. First performance tests of the prototype using laser light were carried out. Irradiation experiments were performed with ionizing radiation, i.e., bremsstrahlung (6 to 21 MV), electrons (6 to 21 MeV), and protons (68 MeV), provided by clinical and research accelerators. Results: Laser experiments show that the current imaging properties differ from the design specifications: The imaging scale of the optical systems is position dependent, ranging from 0.185 mm/pixel to 0.225 mm/pixel. Nevertheless, the developed dosimetry method is proven to be functional for electron and proton beams. Induced radiation doses of 50 mGy or more made 3D dose reconstructions possible. Taking the imaging properties into account, determined dose profiles are in agreement with reference measurements. An inherent drawback of the scintillator is the nonlinear light output for high stopping-power radiation due to the quenching effect. It impacts the depth dose curves measured with the dosimeter. For single Bragg peak distributions this leads to a peak to plateau ratio of 2.8 instead of 4.5 for the reference ionization chamber measurement. Furthermore, the transmission of the clinical bremsstrahlung beams through the scintillator leads to the saturation of one camera, making dose reconstructions in that case presently not feasible. Conclusions: It is shown that distributions of scintillation light generated by proton or electron beams can be reconstructed by the dosimetry system within minutes. The quenching apparent for proton irradiation, and the yet not precisely determined position dependency of the imaging scale, require further investigation and corrections. Upgrading the prototype with larger or inorganic scintillators would increase the detectable proton and electron energy range. The presented results show that the determination of 3D dose distributions using scintillator blocks and optical tomography is a promising dosimetry method." @default.
- W2072352241 created "2016-06-24" @default.
- W2072352241 creator A5000842088 @default.
- W2072352241 creator A5080925014 @default.
- W2072352241 creator A5090955254 @default.
- W2072352241 date "2013-07-23" @default.
- W2072352241 modified "2023-10-14" @default.
- W2072352241 title "Preliminary investigations on the determination of three-dimensional dose distributions using scintillator blocks and optical tomography" @default.
- W2072352241 cites W122927108 @default.
- W2072352241 cites W1966970757 @default.
- W2072352241 cites W1970794371 @default.
- W2072352241 cites W1972764441 @default.
- W2072352241 cites W1975198675 @default.
- W2072352241 cites W1976409626 @default.
- W2072352241 cites W1987485906 @default.
- W2072352241 cites W1987915211 @default.
- W2072352241 cites W1991393867 @default.
- W2072352241 cites W1991499707 @default.
- W2072352241 cites W1992997522 @default.
- W2072352241 cites W1994779124 @default.
- W2072352241 cites W2006053032 @default.
- W2072352241 cites W2006876315 @default.
- W2072352241 cites W2008912246 @default.
- W2072352241 cites W2009764325 @default.
- W2072352241 cites W2011009992 @default.
- W2072352241 cites W2011671788 @default.
- W2072352241 cites W2011739986 @default.
- W2072352241 cites W2020572462 @default.
- W2072352241 cites W2021409806 @default.
- W2072352241 cites W2023930385 @default.
- W2072352241 cites W2030018954 @default.
- W2072352241 cites W2032073807 @default.
- W2072352241 cites W2032322326 @default.
- W2072352241 cites W2038480252 @default.
- W2072352241 cites W2038998285 @default.
- W2072352241 cites W2040740622 @default.
- W2072352241 cites W2041379652 @default.
- W2072352241 cites W2048549511 @default.
- W2072352241 cites W2049654733 @default.
- W2072352241 cites W2050502350 @default.
- W2072352241 cites W2056945411 @default.
- W2072352241 cites W2057920553 @default.
- W2072352241 cites W2061793126 @default.
- W2072352241 cites W2067303952 @default.
- W2072352241 cites W2072088504 @default.
- W2072352241 cites W2072468250 @default.
- W2072352241 cites W2080595439 @default.
- W2072352241 cites W2080862639 @default.
- W2072352241 cites W2082862435 @default.
- W2072352241 cites W2084130225 @default.
- W2072352241 cites W2092420790 @default.
- W2072352241 cites W2095485952 @default.
- W2072352241 cites W2096734493 @default.
- W2072352241 cites W2116065632 @default.
- W2072352241 cites W2135306172 @default.
- W2072352241 cites W2135643187 @default.
- W2072352241 cites W2144964724 @default.
- W2072352241 cites W2145481723 @default.
- W2072352241 cites W2155928350 @default.
- W2072352241 cites W2157067184 @default.
- W2072352241 cites W2157815337 @default.
- W2072352241 cites W2161023276 @default.
- W2072352241 cites W2166220537 @default.
- W2072352241 cites W2335582803 @default.
- W2072352241 cites W2540354403 @default.
- W2072352241 cites W2017892119 @default.
- W2072352241 doi "https://doi.org/10.1118/1.4813898" @default.
- W2072352241 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23927341" @default.
- W2072352241 hasPublicationYear "2013" @default.
- W2072352241 type Work @default.
- W2072352241 sameAs 2072352241 @default.
- W2072352241 citedByCount "20" @default.
- W2072352241 countsByYear W20723522412014 @default.
- W2072352241 countsByYear W20723522412015 @default.
- W2072352241 countsByYear W20723522412016 @default.
- W2072352241 countsByYear W20723522412017 @default.
- W2072352241 countsByYear W20723522412019 @default.
- W2072352241 countsByYear W20723522412020 @default.
- W2072352241 countsByYear W20723522412021 @default.
- W2072352241 countsByYear W20723522412023 @default.
- W2072352241 crossrefType "journal-article" @default.
- W2072352241 hasAuthorship W2072352241A5000842088 @default.
- W2072352241 hasAuthorship W2072352241A5080925014 @default.
- W2072352241 hasAuthorship W2072352241A5090955254 @default.
- W2072352241 hasConcept C105636585 @default.
- W2072352241 hasConcept C120665830 @default.
- W2072352241 hasConcept C121332964 @default.
- W2072352241 hasConcept C153385146 @default.
- W2072352241 hasConcept C161694136 @default.
- W2072352241 hasConcept C192562407 @default.
- W2072352241 hasConcept C19527891 @default.
- W2072352241 hasConcept C205372480 @default.
- W2072352241 hasConcept C2989005 @default.
- W2072352241 hasConcept C71924100 @default.
- W2072352241 hasConcept C75088862 @default.
- W2072352241 hasConcept C94915269 @default.
- W2072352241 hasConceptScore W2072352241C105636585 @default.
- W2072352241 hasConceptScore W2072352241C120665830 @default.