Matches in SemOpenAlex for { <https://semopenalex.org/work/W2072360468> ?p ?o ?g. }
- W2072360468 endingPage "153" @default.
- W2072360468 startingPage "144" @default.
- W2072360468 abstract "In this paper we propose a new method for combining simple classifiers through the analogue Hopfield Neural Network (HNN) optimization paradigm for classifying natural textures in images. The base classifiers are the Fuzzy clustering (FC) and the parametric Bayesian estimator (BP). An initial unsupervised training phase determines the number of clusters and estimates the parameters for both FC and BP. Then a decision phase is carried out, where we build as many Hopfield Neural Networks as the available number of clusters. The number of nodes at each network is the number of pixels in the image which is to be classified. Each node at each network is initially loaded with a state value, which is the membership degree (provided by FC) that the node (pixel) belongs to the cluster associated to the network. Each state is later iteratively updated during the HNN optimization process taking into account the previous states and two types of external influences exerted by other nodes in its neighborhood. The external influences are mapped as consistencies. One is embedded in an energy term which considers the states of the node to be updated and the states of its neighbors. The other is mapped as the inter-connection weights between the nodes. From BP, we obtain the probabilities that the nodes (pixels) belong to a cluster (network). We define these weights as a relation between states and probabilities between the nodes in the neighborhood of the node which is being updated. This is the classifier combination, making the main finding of this paper. The proposed combined strategy based on the HNN outperforms the simple classifiers and also classical combination strategies." @default.
- W2072360468 created "2016-06-24" @default.
- W2072360468 creator A5006686357 @default.
- W2072360468 creator A5041166102 @default.
- W2072360468 creator A5074242922 @default.
- W2072360468 date "2010-01-01" @default.
- W2072360468 modified "2023-09-30" @default.
- W2072360468 title "A Hopfield Neural Network for combining classifiers applied to textured images" @default.
- W2072360468 cites W1553155526 @default.
- W2072360468 cites W1597286183 @default.
- W2072360468 cites W1964083743 @default.
- W2072360468 cites W1976039325 @default.
- W2072360468 cites W1991583486 @default.
- W2072360468 cites W1991777207 @default.
- W2072360468 cites W1993342340 @default.
- W2072360468 cites W2010526455 @default.
- W2072360468 cites W2012353651 @default.
- W2072360468 cites W2012514949 @default.
- W2072360468 cites W2029458478 @default.
- W2072360468 cites W2050070169 @default.
- W2072360468 cites W2055693100 @default.
- W2072360468 cites W2060907774 @default.
- W2072360468 cites W2062210787 @default.
- W2072360468 cites W2064204318 @default.
- W2072360468 cites W2075513305 @default.
- W2072360468 cites W2093886880 @default.
- W2072360468 cites W2098347925 @default.
- W2072360468 cites W2109726006 @default.
- W2072360468 cites W2117450642 @default.
- W2072360468 cites W2119797204 @default.
- W2072360468 cites W2124086037 @default.
- W2072360468 cites W2136704614 @default.
- W2072360468 cites W2138583748 @default.
- W2072360468 cites W2143748127 @default.
- W2072360468 cites W2144603320 @default.
- W2072360468 cites W2144680614 @default.
- W2072360468 cites W2151333813 @default.
- W2072360468 cites W2157179669 @default.
- W2072360468 cites W2157236054 @default.
- W2072360468 cites W2158275940 @default.
- W2072360468 cites W2164568552 @default.
- W2072360468 cites W2166277517 @default.
- W2072360468 cites W2166588786 @default.
- W2072360468 cites W2171021175 @default.
- W2072360468 doi "https://doi.org/10.1016/j.neunet.2009.07.019" @default.
- W2072360468 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19635657" @default.
- W2072360468 hasPublicationYear "2010" @default.
- W2072360468 type Work @default.
- W2072360468 sameAs 2072360468 @default.
- W2072360468 citedByCount "45" @default.
- W2072360468 countsByYear W20723604682012 @default.
- W2072360468 countsByYear W20723604682013 @default.
- W2072360468 countsByYear W20723604682014 @default.
- W2072360468 countsByYear W20723604682015 @default.
- W2072360468 countsByYear W20723604682016 @default.
- W2072360468 countsByYear W20723604682019 @default.
- W2072360468 countsByYear W20723604682020 @default.
- W2072360468 countsByYear W20723604682021 @default.
- W2072360468 countsByYear W20723604682022 @default.
- W2072360468 countsByYear W20723604682023 @default.
- W2072360468 crossrefType "journal-article" @default.
- W2072360468 hasAuthorship W2072360468A5006686357 @default.
- W2072360468 hasAuthorship W2072360468A5041166102 @default.
- W2072360468 hasAuthorship W2072360468A5074242922 @default.
- W2072360468 hasConcept C11413529 @default.
- W2072360468 hasConcept C127413603 @default.
- W2072360468 hasConcept C153180895 @default.
- W2072360468 hasConcept C154945302 @default.
- W2072360468 hasConcept C160633673 @default.
- W2072360468 hasConcept C33923547 @default.
- W2072360468 hasConcept C41008148 @default.
- W2072360468 hasConcept C46421273 @default.
- W2072360468 hasConcept C50644808 @default.
- W2072360468 hasConcept C62611344 @default.
- W2072360468 hasConcept C66938386 @default.
- W2072360468 hasConcept C73555534 @default.
- W2072360468 hasConceptScore W2072360468C11413529 @default.
- W2072360468 hasConceptScore W2072360468C127413603 @default.
- W2072360468 hasConceptScore W2072360468C153180895 @default.
- W2072360468 hasConceptScore W2072360468C154945302 @default.
- W2072360468 hasConceptScore W2072360468C160633673 @default.
- W2072360468 hasConceptScore W2072360468C33923547 @default.
- W2072360468 hasConceptScore W2072360468C41008148 @default.
- W2072360468 hasConceptScore W2072360468C46421273 @default.
- W2072360468 hasConceptScore W2072360468C50644808 @default.
- W2072360468 hasConceptScore W2072360468C62611344 @default.
- W2072360468 hasConceptScore W2072360468C66938386 @default.
- W2072360468 hasConceptScore W2072360468C73555534 @default.
- W2072360468 hasIssue "1" @default.
- W2072360468 hasLocation W20723604681 @default.
- W2072360468 hasLocation W20723604682 @default.
- W2072360468 hasOpenAccess W2072360468 @default.
- W2072360468 hasPrimaryLocation W20723604681 @default.
- W2072360468 hasRelatedWork W1572097188 @default.
- W2072360468 hasRelatedWork W2122592112 @default.
- W2072360468 hasRelatedWork W2136485282 @default.
- W2072360468 hasRelatedWork W2365192768 @default.
- W2072360468 hasRelatedWork W2384320056 @default.