Matches in SemOpenAlex for { <https://semopenalex.org/work/W2072392017> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2072392017 abstract "Recent advances in acquiring high throughput neuroimaging and genomics data provide exciting new opportunities to study the influence of genetic variation on brain structure and function. Research in this emergent field, known as imaging genetics, aims to identify the association between genetic variations such as single nucleotide polymorphisms (SNPs) and neuroimaging quantitative traits (QTs). Sparse canonical correlation analysis (SCCA) is a bi-multivariate analysis method that has the potential to reveal complex multi-SNP-multi-QT associations. However, the scale and complexity of the imaging genetic data have presented critical computational bottlenecks requiring new concepts and enabling tools. In this paper, we present our initial efforts on developing a set of massively parallel strategies to accelerate a widely used SCCA implementation provided by the Penalized Multivariate Analysis (PMA) software package. In particular, we exploit parallel packages of R, optimized mathematical libraries, and the automatic offload model for Intel Many Integrated Core (MIC) architecture to accelerate SCCA. We create several simulated imaging genetics data sets of different sizes and use these synthetic data to perform comparative study. Our performance evaluation demonstrates that a 2-fold speedup can be achieved by the proposed acceleration. The preliminary results show that by combining data parallel strategy and the offload model for MIC we can significantly reduce the knowledge discovery timelines involving applying SCCA on large brain imaging genetics data." @default.
- W2072392017 created "2016-06-24" @default.
- W2072392017 creator A5003759585 @default.
- W2072392017 creator A5008307990 @default.
- W2072392017 creator A5010674973 @default.
- W2072392017 creator A5038203074 @default.
- W2072392017 creator A5079147812 @default.
- W2072392017 creator A5081305410 @default.
- W2072392017 date "2014-07-13" @default.
- W2072392017 modified "2023-09-23" @default.
- W2072392017 title "Accelerating Sparse Canonical Correlation Analysis for Large Brain Imaging Genetics Data" @default.
- W2072392017 cites W1967827763 @default.
- W2072392017 cites W1979341165 @default.
- W2072392017 cites W1996502644 @default.
- W2072392017 cites W2004053049 @default.
- W2072392017 cites W2014988121 @default.
- W2072392017 cites W2050213988 @default.
- W2072392017 cites W2069552222 @default.
- W2072392017 cites W2085791172 @default.
- W2072392017 cites W2098290597 @default.
- W2072392017 cites W2105351532 @default.
- W2072392017 cites W2110496823 @default.
- W2072392017 cites W2151773637 @default.
- W2072392017 cites W2162530578 @default.
- W2072392017 cites W2166348468 @default.
- W2072392017 cites W2166925272 @default.
- W2072392017 doi "https://doi.org/10.1145/2616498.2616515" @default.
- W2072392017 hasPublicationYear "2014" @default.
- W2072392017 type Work @default.
- W2072392017 sameAs 2072392017 @default.
- W2072392017 citedByCount "0" @default.
- W2072392017 crossrefType "proceedings-article" @default.
- W2072392017 hasAuthorship W2072392017A5003759585 @default.
- W2072392017 hasAuthorship W2072392017A5008307990 @default.
- W2072392017 hasAuthorship W2072392017A5010674973 @default.
- W2072392017 hasAuthorship W2072392017A5038203074 @default.
- W2072392017 hasAuthorship W2072392017A5079147812 @default.
- W2072392017 hasAuthorship W2072392017A5081305410 @default.
- W2072392017 hasConcept C117220453 @default.
- W2072392017 hasConcept C153180895 @default.
- W2072392017 hasConcept C153874254 @default.
- W2072392017 hasConcept C154945302 @default.
- W2072392017 hasConcept C169760540 @default.
- W2072392017 hasConcept C18183760 @default.
- W2072392017 hasConcept C2524010 @default.
- W2072392017 hasConcept C33923547 @default.
- W2072392017 hasConcept C41008148 @default.
- W2072392017 hasConcept C58693492 @default.
- W2072392017 hasConcept C70721500 @default.
- W2072392017 hasConcept C86803240 @default.
- W2072392017 hasConceptScore W2072392017C117220453 @default.
- W2072392017 hasConceptScore W2072392017C153180895 @default.
- W2072392017 hasConceptScore W2072392017C153874254 @default.
- W2072392017 hasConceptScore W2072392017C154945302 @default.
- W2072392017 hasConceptScore W2072392017C169760540 @default.
- W2072392017 hasConceptScore W2072392017C18183760 @default.
- W2072392017 hasConceptScore W2072392017C2524010 @default.
- W2072392017 hasConceptScore W2072392017C33923547 @default.
- W2072392017 hasConceptScore W2072392017C41008148 @default.
- W2072392017 hasConceptScore W2072392017C58693492 @default.
- W2072392017 hasConceptScore W2072392017C70721500 @default.
- W2072392017 hasConceptScore W2072392017C86803240 @default.
- W2072392017 hasLocation W20723920171 @default.
- W2072392017 hasOpenAccess W2072392017 @default.
- W2072392017 hasPrimaryLocation W20723920171 @default.
- W2072392017 hasRelatedWork W1994209745 @default.
- W2072392017 hasRelatedWork W2022535874 @default.
- W2072392017 hasRelatedWork W2035687025 @default.
- W2072392017 hasRelatedWork W2093195256 @default.
- W2072392017 hasRelatedWork W2154562908 @default.
- W2072392017 hasRelatedWork W2892060303 @default.
- W2072392017 hasRelatedWork W2945047858 @default.
- W2072392017 hasRelatedWork W3131670725 @default.
- W2072392017 hasRelatedWork W4293812172 @default.
- W2072392017 hasRelatedWork W4311690269 @default.
- W2072392017 isParatext "false" @default.
- W2072392017 isRetracted "false" @default.
- W2072392017 magId "2072392017" @default.
- W2072392017 workType "article" @default.