Matches in SemOpenAlex for { <https://semopenalex.org/work/W2072494828> ?p ?o ?g. }
- W2072494828 endingPage "23" @default.
- W2072494828 startingPage "1" @default.
- W2072494828 abstract "Regular Bayesian and frequentist approximations in statistics are studied within a unified framework. In particular it is shown how some higher-order likelihood-based approximations arise from their Bayesian counterparts via an unsmoothing argument. This approach serves to shed new light on these formulae and to clarify relationships between Bayesian and frequentist inferences. For example, Bayesian interpretations of higher-order approximations can give insights into the acceptability, or otherwise, of these approximations from the point of view of ‘relevance’ to the actual data observed. Furthermore, this approach is a very natural one for the study of more general ‘nonregular’ problems, models for dependent data, and approximate conditional inference. For ease of exposition the development is in terms of a single real parameter. The main analytic development proceeds in terms of signed roots of log-density ratios." @default.
- W2072494828 created "2016-06-24" @default.
- W2072494828 creator A5066192440 @default.
- W2072494828 date "1995-03-01" @default.
- W2072494828 modified "2023-10-16" @default.
- W2072494828 title "A framework for Bayesian and likelihood approximations in statistics" @default.
- W2072494828 cites W1564075646 @default.
- W2072494828 cites W1603339577 @default.
- W2072494828 cites W172107136 @default.
- W2072494828 cites W1959492 @default.
- W2072494828 cites W1979045994 @default.
- W2072494828 cites W1984970164 @default.
- W2072494828 cites W1987715244 @default.
- W2072494828 cites W1994394568 @default.
- W2072494828 cites W1995963238 @default.
- W2072494828 cites W2000951514 @default.
- W2072494828 cites W2004325310 @default.
- W2072494828 cites W2013778538 @default.
- W2072494828 cites W2017696952 @default.
- W2072494828 cites W2020755546 @default.
- W2072494828 cites W2021410730 @default.
- W2072494828 cites W2032374109 @default.
- W2072494828 cites W2033393800 @default.
- W2072494828 cites W2037430324 @default.
- W2072494828 cites W2043955494 @default.
- W2072494828 cites W2045187229 @default.
- W2072494828 cites W2049361783 @default.
- W2072494828 cites W2053159125 @default.
- W2072494828 cites W2065238002 @default.
- W2072494828 cites W2068236452 @default.
- W2072494828 cites W2087329955 @default.
- W2072494828 cites W2095227815 @default.
- W2072494828 cites W2101583344 @default.
- W2072494828 cites W2102823390 @default.
- W2072494828 cites W2123039319 @default.
- W2072494828 cites W2142259463 @default.
- W2072494828 cites W2161364915 @default.
- W2072494828 cites W2314297038 @default.
- W2072494828 cites W2330279292 @default.
- W2072494828 cites W2331747324 @default.
- W2072494828 cites W2462667841 @default.
- W2072494828 cites W2463145455 @default.
- W2072494828 cites W2470896286 @default.
- W2072494828 cites W2477897397 @default.
- W2072494828 cites W2904185096 @default.
- W2072494828 cites W2905121418 @default.
- W2072494828 cites W2936537830 @default.
- W2072494828 cites W29977228 @default.
- W2072494828 cites W66417687 @default.
- W2072494828 cites W145831949 @default.
- W2072494828 cites W2009005308 @default.
- W2072494828 cites W2744394567 @default.
- W2072494828 doi "https://doi.org/10.1093/biomet/82.1.1" @default.
- W2072494828 hasPublicationYear "1995" @default.
- W2072494828 type Work @default.
- W2072494828 sameAs 2072494828 @default.
- W2072494828 citedByCount "48" @default.
- W2072494828 countsByYear W20724948282012 @default.
- W2072494828 countsByYear W20724948282013 @default.
- W2072494828 countsByYear W20724948282014 @default.
- W2072494828 countsByYear W20724948282016 @default.
- W2072494828 countsByYear W20724948282017 @default.
- W2072494828 countsByYear W20724948282020 @default.
- W2072494828 countsByYear W20724948282021 @default.
- W2072494828 countsByYear W20724948282022 @default.
- W2072494828 crossrefType "journal-article" @default.
- W2072494828 hasAuthorship W2072494828A5066192440 @default.
- W2072494828 hasConcept C101112237 @default.
- W2072494828 hasConcept C105795698 @default.
- W2072494828 hasConcept C107673813 @default.
- W2072494828 hasConcept C134261354 @default.
- W2072494828 hasConcept C149569020 @default.
- W2072494828 hasConcept C149782125 @default.
- W2072494828 hasConcept C154945302 @default.
- W2072494828 hasConcept C160234255 @default.
- W2072494828 hasConcept C162376815 @default.
- W2072494828 hasConcept C2776214188 @default.
- W2072494828 hasConcept C28826006 @default.
- W2072494828 hasConcept C33923547 @default.
- W2072494828 hasConcept C41008148 @default.
- W2072494828 hasConcept C75455068 @default.
- W2072494828 hasConceptScore W2072494828C101112237 @default.
- W2072494828 hasConceptScore W2072494828C105795698 @default.
- W2072494828 hasConceptScore W2072494828C107673813 @default.
- W2072494828 hasConceptScore W2072494828C134261354 @default.
- W2072494828 hasConceptScore W2072494828C149569020 @default.
- W2072494828 hasConceptScore W2072494828C149782125 @default.
- W2072494828 hasConceptScore W2072494828C154945302 @default.
- W2072494828 hasConceptScore W2072494828C160234255 @default.
- W2072494828 hasConceptScore W2072494828C162376815 @default.
- W2072494828 hasConceptScore W2072494828C2776214188 @default.
- W2072494828 hasConceptScore W2072494828C28826006 @default.
- W2072494828 hasConceptScore W2072494828C33923547 @default.
- W2072494828 hasConceptScore W2072494828C41008148 @default.
- W2072494828 hasConceptScore W2072494828C75455068 @default.
- W2072494828 hasIssue "1" @default.
- W2072494828 hasLocation W20724948281 @default.
- W2072494828 hasOpenAccess W2072494828 @default.