Matches in SemOpenAlex for { <https://semopenalex.org/work/W2072581736> ?p ?o ?g. }
- W2072581736 endingPage "118" @default.
- W2072581736 startingPage "111" @default.
- W2072581736 abstract "Computational and data sciences are transforming the entire science enterprise. In the arena of GIS, this is represented by the emergence of cyberGIS. We provide an overview of applying the cyberGIS approach to spatial analysis for health studies. We emphasize that cyberGIS is not just a service to traditional spatial analyses, but itself is an alternative approach to problem solving. Some fundamental and profound distinctions of cyberGIS approaches in health-GIS include the following: (1) they may greatly reduce the reliance on models or assumptions, and instead seek actual empirical evidence through mining a large amount of data or virtual empirical evidence generated through computation; (2) they tend to be non-parametric and tend to generate local solution; (3) they are scalable to high-resolution and less aggregated data; (4) they tend to be stochastic rather than deterministic; and (5) with these approaches, the large amount of data may not be only from input data-sets, but also from analytical workflows. We described the kernel ratio estimation for local intensity estimation, the restricted and controlled Monte Carlo for data disaggregation, and unrestricted and controlled Monte Carlo for statistical significance evaluation as examples of the cyberGIS approaches in health-GIS." @default.
- W2072581736 created "2016-06-24" @default.
- W2072581736 creator A5026042163 @default.
- W2072581736 creator A5070348919 @default.
- W2072581736 date "2015-03-26" @default.
- W2072581736 modified "2023-10-18" @default.
- W2072581736 title "Computational and data sciences for health-GIS" @default.
- W2072581736 cites W1967631377 @default.
- W2072581736 cites W1970143540 @default.
- W2072581736 cites W1974596929 @default.
- W2072581736 cites W1987264627 @default.
- W2072581736 cites W1988377065 @default.
- W2072581736 cites W1991040633 @default.
- W2072581736 cites W1992022798 @default.
- W2072581736 cites W2002151188 @default.
- W2072581736 cites W2007909376 @default.
- W2072581736 cites W2010185761 @default.
- W2072581736 cites W2012496820 @default.
- W2072581736 cites W2015987697 @default.
- W2072581736 cites W2027331096 @default.
- W2072581736 cites W2029793773 @default.
- W2072581736 cites W2031115564 @default.
- W2072581736 cites W2035578370 @default.
- W2072581736 cites W2046135998 @default.
- W2072581736 cites W2051974104 @default.
- W2072581736 cites W2055429288 @default.
- W2072581736 cites W2056491557 @default.
- W2072581736 cites W2059299474 @default.
- W2072581736 cites W2061362237 @default.
- W2072581736 cites W2067873350 @default.
- W2072581736 cites W2076859396 @default.
- W2072581736 cites W2082146288 @default.
- W2072581736 cites W2083771229 @default.
- W2072581736 cites W2084391800 @default.
- W2072581736 cites W2088897443 @default.
- W2072581736 cites W2092700150 @default.
- W2072581736 cites W2093717796 @default.
- W2072581736 cites W2102137042 @default.
- W2072581736 cites W2103613143 @default.
- W2072581736 cites W2108279037 @default.
- W2072581736 cites W2125104288 @default.
- W2072581736 cites W2126083426 @default.
- W2072581736 cites W2136502970 @default.
- W2072581736 cites W2138551725 @default.
- W2072581736 cites W2146260047 @default.
- W2072581736 cites W2146515062 @default.
- W2072581736 cites W2148988158 @default.
- W2072581736 cites W2149477888 @default.
- W2072581736 cites W2161987701 @default.
- W2072581736 cites W2162774483 @default.
- W2072581736 cites W2163054553 @default.
- W2072581736 cites W2166504101 @default.
- W2072581736 cites W2168339025 @default.
- W2072581736 cites W2282743468 @default.
- W2072581736 cites W2478338686 @default.
- W2072581736 cites W2495595050 @default.
- W2072581736 cites W2588755944 @default.
- W2072581736 cites W4234404834 @default.
- W2072581736 cites W4249587856 @default.
- W2072581736 doi "https://doi.org/10.1080/19475683.2015.1027735" @default.
- W2072581736 hasPublicationYear "2015" @default.
- W2072581736 type Work @default.
- W2072581736 sameAs 2072581736 @default.
- W2072581736 citedByCount "12" @default.
- W2072581736 countsByYear W20725817362016 @default.
- W2072581736 countsByYear W20725817362018 @default.
- W2072581736 countsByYear W20725817362020 @default.
- W2072581736 countsByYear W20725817362021 @default.
- W2072581736 countsByYear W20725817362022 @default.
- W2072581736 crossrefType "journal-article" @default.
- W2072581736 hasAuthorship W2072581736A5026042163 @default.
- W2072581736 hasAuthorship W2072581736A5070348919 @default.
- W2072581736 hasConcept C105795698 @default.
- W2072581736 hasConcept C11413529 @default.
- W2072581736 hasConcept C117251300 @default.
- W2072581736 hasConcept C124101348 @default.
- W2072581736 hasConcept C127413603 @default.
- W2072581736 hasConcept C149782125 @default.
- W2072581736 hasConcept C159620131 @default.
- W2072581736 hasConcept C177212765 @default.
- W2072581736 hasConcept C19499675 @default.
- W2072581736 hasConcept C201995342 @default.
- W2072581736 hasConcept C2522767166 @default.
- W2072581736 hasConcept C33923547 @default.
- W2072581736 hasConcept C41008148 @default.
- W2072581736 hasConcept C45374587 @default.
- W2072581736 hasConcept C48044578 @default.
- W2072581736 hasConcept C77088390 @default.
- W2072581736 hasConcept C96250715 @default.
- W2072581736 hasConcept C97144632 @default.
- W2072581736 hasConceptScore W2072581736C105795698 @default.
- W2072581736 hasConceptScore W2072581736C11413529 @default.
- W2072581736 hasConceptScore W2072581736C117251300 @default.
- W2072581736 hasConceptScore W2072581736C124101348 @default.
- W2072581736 hasConceptScore W2072581736C127413603 @default.
- W2072581736 hasConceptScore W2072581736C149782125 @default.
- W2072581736 hasConceptScore W2072581736C159620131 @default.
- W2072581736 hasConceptScore W2072581736C177212765 @default.