Matches in SemOpenAlex for { <https://semopenalex.org/work/W2072609132> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2072609132 endingPage "121" @default.
- W2072609132 startingPage "105" @default.
- W2072609132 abstract "The theory of complexity spaces has been introduced in [Sch95], where the applicability to the complexity analysis of Divide and Conquer algorithms has been discussed. This analysis has been based on the Banach Fixed Point Theorem, which has led to the study of biBanach spaces in [RS98]. In [RS96] we have introduced the dual complexity space as a convenient tool to carry out a mathematical analysis of complexity spaces (cf. also [RS98]). We recall that the complexity space as well as its dual are weightable quasi-metric spaces as well as its dual are weightable quasi-metric spaces or, equivalently, partial metric spaces (cf. [Sch95], [RS96] as well as [Kün93],[KV94] and [Mat94]. Recently it has been shown in [Sch02a] that partial metric spaces correspond dually, in the context of Domain Theory, to semivaluation spaces. Here, we show that the dual complexity space is the negative cone of a biBanach norm-weightable Riesz space (e.g. [BOU52] and [RS98]) and characterize the class of norm-weightable Riesz spaces in terms of semivaluation spaces. In particular, we show that the quasi-norm of an element of such a Riesz space is the quasi-norm of its projection on the negative cone. Hence, quasi-norms are completely determined by partial metrics, justifying, in this context, O'Neill's analogy between these notions. In [Sch02a], It is shown that quasi-uniform semilattices arise naturally in Domain Theory, which motivates a generalization of our characterization to the context of norm-weightable quasi-uniform Riesz spaces." @default.
- W2072609132 created "2016-06-24" @default.
- W2072609132 creator A5006183223 @default.
- W2072609132 creator A5008660700 @default.
- W2072609132 creator A5016654758 @default.
- W2072609132 date "2003-10-01" @default.
- W2072609132 modified "2023-10-16" @default.
- W2072609132 title "Norm-weightable Riesz Spaces and the Dual Complexity Space" @default.
- W2072609132 cites W1524112282 @default.
- W2072609132 cites W1557973150 @default.
- W2072609132 cites W1966825584 @default.
- W2072609132 cites W1991045633 @default.
- W2072609132 cites W2047277075 @default.
- W2072609132 cites W2065220161 @default.
- W2072609132 cites W2076019225 @default.
- W2072609132 cites W2081233506 @default.
- W2072609132 cites W2082829593 @default.
- W2072609132 cites W2110149567 @default.
- W2072609132 cites W2153211279 @default.
- W2072609132 doi "https://doi.org/10.1016/s1571-0661(04)80769-2" @default.
- W2072609132 hasPublicationYear "2003" @default.
- W2072609132 type Work @default.
- W2072609132 sameAs 2072609132 @default.
- W2072609132 citedByCount "7" @default.
- W2072609132 countsByYear W20726091322023 @default.
- W2072609132 crossrefType "journal-article" @default.
- W2072609132 hasAuthorship W2072609132A5006183223 @default.
- W2072609132 hasAuthorship W2072609132A5008660700 @default.
- W2072609132 hasAuthorship W2072609132A5016654758 @default.
- W2072609132 hasBestOaLocation W20726091321 @default.
- W2072609132 hasConcept C100022809 @default.
- W2072609132 hasConcept C104317684 @default.
- W2072609132 hasConcept C118615104 @default.
- W2072609132 hasConcept C132954091 @default.
- W2072609132 hasConcept C17744445 @default.
- W2072609132 hasConcept C185592680 @default.
- W2072609132 hasConcept C191795146 @default.
- W2072609132 hasConcept C198043062 @default.
- W2072609132 hasConcept C199539241 @default.
- W2072609132 hasConcept C202444582 @default.
- W2072609132 hasConcept C33923547 @default.
- W2072609132 hasConcept C55112680 @default.
- W2072609132 hasConcept C55493867 @default.
- W2072609132 hasConcept C6183050 @default.
- W2072609132 hasConceptScore W2072609132C100022809 @default.
- W2072609132 hasConceptScore W2072609132C104317684 @default.
- W2072609132 hasConceptScore W2072609132C118615104 @default.
- W2072609132 hasConceptScore W2072609132C132954091 @default.
- W2072609132 hasConceptScore W2072609132C17744445 @default.
- W2072609132 hasConceptScore W2072609132C185592680 @default.
- W2072609132 hasConceptScore W2072609132C191795146 @default.
- W2072609132 hasConceptScore W2072609132C198043062 @default.
- W2072609132 hasConceptScore W2072609132C199539241 @default.
- W2072609132 hasConceptScore W2072609132C202444582 @default.
- W2072609132 hasConceptScore W2072609132C33923547 @default.
- W2072609132 hasConceptScore W2072609132C55112680 @default.
- W2072609132 hasConceptScore W2072609132C55493867 @default.
- W2072609132 hasConceptScore W2072609132C6183050 @default.
- W2072609132 hasLocation W20726091321 @default.
- W2072609132 hasOpenAccess W2072609132 @default.
- W2072609132 hasPrimaryLocation W20726091321 @default.
- W2072609132 hasRelatedWork W170240435 @default.
- W2072609132 hasRelatedWork W2023111059 @default.
- W2072609132 hasRelatedWork W2028999494 @default.
- W2072609132 hasRelatedWork W2147619060 @default.
- W2072609132 hasRelatedWork W2374649169 @default.
- W2072609132 hasRelatedWork W2392085432 @default.
- W2072609132 hasRelatedWork W2910693632 @default.
- W2072609132 hasRelatedWork W2950376781 @default.
- W2072609132 hasRelatedWork W4366768782 @default.
- W2072609132 hasRelatedWork W4386890267 @default.
- W2072609132 hasVolume "74" @default.
- W2072609132 isParatext "false" @default.
- W2072609132 isRetracted "false" @default.
- W2072609132 magId "2072609132" @default.
- W2072609132 workType "article" @default.