Matches in SemOpenAlex for { <https://semopenalex.org/work/W2072620194> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2072620194 endingPage "1107" @default.
- W2072620194 startingPage "1097" @default.
- W2072620194 abstract "This paper describes probabilistic modeling methods to solve the problem of discriminating between five facial orientations with very little labeled data. Three models are explored. The first model maintains no inter-pixel dependencies, the second model is capable of modeling a set of arbitrary pair-wise dependencies, and the last model allows dependencies only between neighboring pixels. We show that for all three of these models, the accuracy of the learned models can be greatly improved by augmenting a small number of labeled training images with a large set of unlabeled images using Expectation–Maximization. This is important because it is often difficult to obtain image labels, while many unlabeled images are readily available. Through a large set of empirical tests, we examine the benefits of unlabeled data for each of the models. By using only two randomly selected labeled examples per class, we can discriminate between the five facial orientations with an accuracy of 94%; with six labeled examples, we achieve an accuracy of 98%." @default.
- W2072620194 created "2016-06-24" @default.
- W2072620194 creator A5085643229 @default.
- W2072620194 date "2000-12-01" @default.
- W2072620194 modified "2023-09-25" @default.
- W2072620194 title "USING LABELED AND UNLABELED DATA FOR PROBABILISTIC MODELING OF FACE ORIENTATION" @default.
- W2072620194 cites W2039609561 @default.
- W2072620194 cites W2101398245 @default.
- W2072620194 cites W2138451337 @default.
- W2072620194 cites W2163166770 @default.
- W2072620194 cites W2949071206 @default.
- W2072620194 doi "https://doi.org/10.1142/s0218001400000672" @default.
- W2072620194 hasPublicationYear "2000" @default.
- W2072620194 type Work @default.
- W2072620194 sameAs 2072620194 @default.
- W2072620194 citedByCount "6" @default.
- W2072620194 countsByYear W20726201942017 @default.
- W2072620194 countsByYear W20726201942019 @default.
- W2072620194 countsByYear W20726201942022 @default.
- W2072620194 crossrefType "journal-article" @default.
- W2072620194 hasAuthorship W2072620194A5085643229 @default.
- W2072620194 hasConcept C105795698 @default.
- W2072620194 hasConcept C114289077 @default.
- W2072620194 hasConcept C115961682 @default.
- W2072620194 hasConcept C126255220 @default.
- W2072620194 hasConcept C144024400 @default.
- W2072620194 hasConcept C153180895 @default.
- W2072620194 hasConcept C154945302 @default.
- W2072620194 hasConcept C160633673 @default.
- W2072620194 hasConcept C16345878 @default.
- W2072620194 hasConcept C177264268 @default.
- W2072620194 hasConcept C182081679 @default.
- W2072620194 hasConcept C199360897 @default.
- W2072620194 hasConcept C2524010 @default.
- W2072620194 hasConcept C2776145971 @default.
- W2072620194 hasConcept C2776330181 @default.
- W2072620194 hasConcept C2777212361 @default.
- W2072620194 hasConcept C2779304628 @default.
- W2072620194 hasConcept C33923547 @default.
- W2072620194 hasConcept C36289849 @default.
- W2072620194 hasConcept C41008148 @default.
- W2072620194 hasConcept C49781872 @default.
- W2072620194 hasConcept C49937458 @default.
- W2072620194 hasConcept C51632099 @default.
- W2072620194 hasConcept C58489278 @default.
- W2072620194 hasConceptScore W2072620194C105795698 @default.
- W2072620194 hasConceptScore W2072620194C114289077 @default.
- W2072620194 hasConceptScore W2072620194C115961682 @default.
- W2072620194 hasConceptScore W2072620194C126255220 @default.
- W2072620194 hasConceptScore W2072620194C144024400 @default.
- W2072620194 hasConceptScore W2072620194C153180895 @default.
- W2072620194 hasConceptScore W2072620194C154945302 @default.
- W2072620194 hasConceptScore W2072620194C160633673 @default.
- W2072620194 hasConceptScore W2072620194C16345878 @default.
- W2072620194 hasConceptScore W2072620194C177264268 @default.
- W2072620194 hasConceptScore W2072620194C182081679 @default.
- W2072620194 hasConceptScore W2072620194C199360897 @default.
- W2072620194 hasConceptScore W2072620194C2524010 @default.
- W2072620194 hasConceptScore W2072620194C2776145971 @default.
- W2072620194 hasConceptScore W2072620194C2776330181 @default.
- W2072620194 hasConceptScore W2072620194C2777212361 @default.
- W2072620194 hasConceptScore W2072620194C2779304628 @default.
- W2072620194 hasConceptScore W2072620194C33923547 @default.
- W2072620194 hasConceptScore W2072620194C36289849 @default.
- W2072620194 hasConceptScore W2072620194C41008148 @default.
- W2072620194 hasConceptScore W2072620194C49781872 @default.
- W2072620194 hasConceptScore W2072620194C49937458 @default.
- W2072620194 hasConceptScore W2072620194C51632099 @default.
- W2072620194 hasConceptScore W2072620194C58489278 @default.
- W2072620194 hasIssue "08" @default.
- W2072620194 hasLocation W20726201941 @default.
- W2072620194 hasOpenAccess W2072620194 @default.
- W2072620194 hasPrimaryLocation W20726201941 @default.
- W2072620194 hasRelatedWork W2070263375 @default.
- W2072620194 hasRelatedWork W2095643100 @default.
- W2072620194 hasRelatedWork W2104721238 @default.
- W2072620194 hasRelatedWork W2136485282 @default.
- W2072620194 hasRelatedWork W2158485347 @default.
- W2072620194 hasRelatedWork W2999747031 @default.
- W2072620194 hasRelatedWork W3043252291 @default.
- W2072620194 hasRelatedWork W3155924680 @default.
- W2072620194 hasRelatedWork W4281637929 @default.
- W2072620194 hasRelatedWork W4302327664 @default.
- W2072620194 hasVolume "14" @default.
- W2072620194 isParatext "false" @default.
- W2072620194 isRetracted "false" @default.
- W2072620194 magId "2072620194" @default.
- W2072620194 workType "article" @default.