Matches in SemOpenAlex for { <https://semopenalex.org/work/W2072643402> ?p ?o ?g. }
- W2072643402 endingPage "240" @default.
- W2072643402 startingPage "223" @default.
- W2072643402 abstract "We present new major and trace element data for 28 basalts and 10 basaltic glasses recovered from 16 locations from the North Chile Ridge (NCR) at 36°50′ to 38°56′S. This part of the Chile Ridge consists of three short ridge segments, which are characterized by deep (3200–4100 m) axial valleys. Chemical compositions of the basaltic glasses vary from primitive to moderately fractionated basalts (MgO = 9.54−7.28 wt%). All rocks are incompatible element depleted, mid-ocean ridge basalts (MORB) with average chondrite-normalized(La/Sm)N ratios of 0.46 ± 0.08. The radiogenic isotopic ratios of 10 representative samples display a narrow range in87Sr86Sr ratios from 0.70241 to 0.70249.143Nd144Nd ratios also vary within a small range from 0.51312 to 0.51318, and the206Pb204Pb ratios range from 18.2 to 18.6, with one exception which has a206Pb204Pb of 19.1. Overall, isotopic compositions are similar to average depleted MORB from the EPR (East Pacific Rise) and MAR (Mid-Atlantic Ridge), but207Pb204Pb ratios are significantly higher. Pb isotopic systematics of East Pacific MORB reflect large-scale heterogeneities, which are probably the result of long-lived differences inTh/U ratios in the mantle. Significant differences exist in the inferred primary melt compositions between the NCR basalts and depleted MORB from the South EPR and Galapagos Spreading Centre (GSC). For a given MgO content, basalt glasses from the NCR have systematically higher Na and Ti and lower Ca concentrations than those from the South EPR and the GSC. This has been interpreted as indicating relatively low average degrees of melting, which is possibly the result of cooling the shallow asthenosphere near transform offsets. NCR basalts are, on average, more primitive than basalts from the EPR and GSC, implying the lack of a robust magmatic system in this part of the Chile Ridge. This, together with the characteristic ridge topography and short average segment length, suggests that the magmatic system is short-lived, similar to slow-spreading ridges. This can be attributed to lower upwelling rates and, consequently, low magma supply rates near the transform offsets. The majority of the basalts from the NCR are unusually depleted in Nb and Ta relative to average depleted MORB. Trace element modelling shows that the distinct trace element characteristics of the NCR lavas could be the result of melting a mantle which has experienced a previous melting episode. This episode was possibly related to upwelling and melting of the mantle beneath the Pacific-Farallon ridge more than a million years ago." @default.
- W2072643402 created "2016-06-24" @default.
- W2072643402 creator A5035737416 @default.
- W2072643402 creator A5042061656 @default.
- W2072643402 creator A5049298210 @default.
- W2072643402 creator A5053939112 @default.
- W2072643402 creator A5062501861 @default.
- W2072643402 creator A5067049015 @default.
- W2072643402 creator A5079791037 @default.
- W2072643402 date "1996-07-01" @default.
- W2072643402 modified "2023-10-16" @default.
- W2072643402 title "Unusually large NbTa depletions in North Chile ridge basalts at 36°50′ to 38°56′S: major element, trace element, and isotopic data" @default.
- W2072643402 cites W1965410050 @default.
- W2072643402 cites W1968206413 @default.
- W2072643402 cites W1975279400 @default.
- W2072643402 cites W1976788350 @default.
- W2072643402 cites W1977546326 @default.
- W2072643402 cites W1983626964 @default.
- W2072643402 cites W1985040296 @default.
- W2072643402 cites W1985049087 @default.
- W2072643402 cites W1987243508 @default.
- W2072643402 cites W1988908945 @default.
- W2072643402 cites W1989698386 @default.
- W2072643402 cites W1989719468 @default.
- W2072643402 cites W1990814837 @default.
- W2072643402 cites W1993409945 @default.
- W2072643402 cites W1996869230 @default.
- W2072643402 cites W2000996822 @default.
- W2072643402 cites W2001649482 @default.
- W2072643402 cites W2006372142 @default.
- W2072643402 cites W2006783184 @default.
- W2072643402 cites W2010477761 @default.
- W2072643402 cites W2012023697 @default.
- W2072643402 cites W2014608018 @default.
- W2072643402 cites W2016701904 @default.
- W2072643402 cites W2017597965 @default.
- W2072643402 cites W2017714045 @default.
- W2072643402 cites W2020425172 @default.
- W2072643402 cites W2021183050 @default.
- W2072643402 cites W2025365766 @default.
- W2072643402 cites W2030936724 @default.
- W2072643402 cites W2030992170 @default.
- W2072643402 cites W2032800272 @default.
- W2072643402 cites W2034591006 @default.
- W2072643402 cites W2035786859 @default.
- W2072643402 cites W2036255513 @default.
- W2072643402 cites W2039100744 @default.
- W2072643402 cites W2046736608 @default.
- W2072643402 cites W2047567126 @default.
- W2072643402 cites W2050130236 @default.
- W2072643402 cites W2054522602 @default.
- W2072643402 cites W2062708633 @default.
- W2072643402 cites W2063205632 @default.
- W2072643402 cites W2065629370 @default.
- W2072643402 cites W2067481326 @default.
- W2072643402 cites W2068338236 @default.
- W2072643402 cites W2068541778 @default.
- W2072643402 cites W2072748040 @default.
- W2072643402 cites W2074879838 @default.
- W2072643402 cites W2075845557 @default.
- W2072643402 cites W2078840355 @default.
- W2072643402 cites W2082667528 @default.
- W2072643402 cites W2085831119 @default.
- W2072643402 cites W2087663267 @default.
- W2072643402 cites W2089400816 @default.
- W2072643402 cites W2094025567 @default.
- W2072643402 cites W2096458107 @default.
- W2072643402 cites W2107283728 @default.
- W2072643402 cites W2119949381 @default.
- W2072643402 cites W2145665915 @default.
- W2072643402 cites W2160668753 @default.
- W2072643402 cites W2339942926 @default.
- W2072643402 cites W1986210248 @default.
- W2072643402 doi "https://doi.org/10.1016/0012-821x(96)00095-7" @default.
- W2072643402 hasPublicationYear "1996" @default.
- W2072643402 type Work @default.
- W2072643402 sameAs 2072643402 @default.
- W2072643402 citedByCount "59" @default.
- W2072643402 countsByYear W20726434022013 @default.
- W2072643402 countsByYear W20726434022014 @default.
- W2072643402 countsByYear W20726434022015 @default.
- W2072643402 countsByYear W20726434022016 @default.
- W2072643402 countsByYear W20726434022017 @default.
- W2072643402 countsByYear W20726434022019 @default.
- W2072643402 countsByYear W20726434022020 @default.
- W2072643402 countsByYear W20726434022021 @default.
- W2072643402 countsByYear W20726434022022 @default.
- W2072643402 countsByYear W20726434022023 @default.
- W2072643402 crossrefType "journal-article" @default.
- W2072643402 hasAuthorship W2072643402A5035737416 @default.
- W2072643402 hasAuthorship W2072643402A5042061656 @default.
- W2072643402 hasAuthorship W2072643402A5049298210 @default.
- W2072643402 hasAuthorship W2072643402A5053939112 @default.
- W2072643402 hasAuthorship W2072643402A5062501861 @default.
- W2072643402 hasAuthorship W2072643402A5067049015 @default.
- W2072643402 hasAuthorship W2072643402A5079791037 @default.
- W2072643402 hasConcept C127313418 @default.
- W2072643402 hasConcept C151730666 @default.